咨询与建议

限定检索结果

文献类型

  • 23,136 篇 会议
  • 90 篇 期刊文献
  • 15 册 图书

馆藏范围

  • 23,240 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,632 篇 工学
    • 11,162 篇 计算机科学与技术...
    • 3,338 篇 软件工程
    • 2,413 篇 机械工程
    • 1,664 篇 光学工程
    • 1,204 篇 电气工程
    • 973 篇 控制科学与工程
    • 738 篇 信息与通信工程
    • 381 篇 仪器科学与技术
    • 322 篇 生物工程
    • 239 篇 生物医学工程(可授...
    • 188 篇 电子科学与技术(可...
    • 109 篇 化学工程与技术
    • 104 篇 安全科学与工程
    • 99 篇 测绘科学与技术
    • 85 篇 建筑学
    • 83 篇 交通运输工程
    • 82 篇 土木工程
    • 56 篇 力学(可授工学、理...
  • 3,695 篇 医学
    • 3,683 篇 临床医学
    • 76 篇 基础医学(可授医学...
  • 3,138 篇 理学
    • 1,880 篇 物理学
    • 1,605 篇 数学
    • 547 篇 统计学(可授理学、...
    • 466 篇 生物学
    • 243 篇 系统科学
    • 107 篇 化学
  • 491 篇 管理学
    • 290 篇 图书情报与档案管...
    • 212 篇 管理科学与工程(可...
    • 74 篇 工商管理
  • 252 篇 艺术学
    • 251 篇 设计学(可授艺术学...
  • 58 篇 法学
  • 38 篇 农学
  • 25 篇 教育学
  • 19 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,396 篇 computer vision
  • 3,893 篇 pattern recognit...
  • 3,101 篇 training
  • 2,104 篇 computational mo...
  • 1,898 篇 visualization
  • 1,800 篇 cameras
  • 1,487 篇 feature extracti...
  • 1,475 篇 three-dimensiona...
  • 1,464 篇 shape
  • 1,447 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,234 篇 computer archite...
  • 1,213 篇 semantics
  • 1,112 篇 benchmark testin...
  • 1,111 篇 conferences
  • 1,104 篇 layout
  • 1,093 篇 object detection
  • 1,085 篇 computer science
  • 1,026 篇 codes
  • 907 篇 face recognition

机构

  • 137 篇 univ sci & techn...
  • 124 篇 univ chinese aca...
  • 121 篇 chinese univ hon...
  • 108 篇 tsinghua univers...
  • 108 篇 carnegie mellon ...
  • 105 篇 microsoft resear...
  • 97 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 university of sc...
  • 84 篇 zhejiang univers...
  • 81 篇 shanghai ai lab ...
  • 79 篇 university of ch...
  • 75 篇 shanghai jiao to...
  • 69 篇 microsoft res as...
  • 68 篇 alibaba grp peop...
  • 66 篇 adobe research
  • 65 篇 national laborat...
  • 64 篇 peking univ peop...
  • 61 篇 univ oxford oxfo...
  • 59 篇 peng cheng labor...

作者

  • 80 篇 van gool luc
  • 71 篇 timofte radu
  • 65 篇 zhang lei
  • 43 篇 luc van gool
  • 40 篇 yang yi
  • 37 篇 loy chen change
  • 34 篇 li stan z.
  • 33 篇 liu yang
  • 33 篇 xiaoou tang
  • 33 篇 murino vittorio
  • 33 篇 chen chen
  • 33 篇 qi tian
  • 33 篇 li fei-fei
  • 32 篇 tian qi
  • 32 篇 sun jian
  • 30 篇 ying shan
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 28 篇 li xin
  • 28 篇 hanqing lu

语言

  • 23,043 篇 英文
  • 171 篇 其他
  • 20 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition"
23241 条 记 录,以下是161-170 订阅
排序:
VLM-PL: Advanced Pseudo Labeling approach for Class Incremental Object Detection via vision-Language Model
VLM-PL: Advanced Pseudo Labeling approach for Class Incremen...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kim, Junsu Ku, Yunhoe Kim, Jihyeon Cha, Junuk Baek, Seungryul UNIST Ulsan South Korea MODULABS Seoul South Korea
In the field of Class Incremental Object Detection (CIOD), creating models that can continuously learn like humans is a major challenge. Pseudo-labeling methods, although initially powerful, struggle with multi-scenar... 详细信息
来源: 评论
ALINA: Advanced Line Identification and Notation Algorithm
ALINA: Advanced Line Identification and Notation Algorithm
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Khan, Mohammed Abdul Hafeez Ganeriwala, Parth Bhattacharyya, Siddhartha Neogi, Natasha Muthalagu, Raja Florida Inst Technol Melbourne FL 32901 USA NASA Langley Res Ctr Hampton VA 23665 USA BITS Pilani Dubai Campus Dubai U Arab Emirates
Labels are the cornerstone of supervised machine learning algorithms. Most visual recognition methods are fully supervised, using bounding boxes or pixel-wise segmentations for object localization. Traditional labelin... 详细信息
来源: 评论
LLaFS: When Large Language Models Meet Few-Shot Segmentation
LLaFS: When Large Language Models Meet Few-Shot Segmentation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhu, Lanyun Chen, Tianrun Ji, Deyi Ye, Jieping Liu, Jun Singapore Univ Technol & Design Singapore Singapore Zhejiang Univ Hangzhou Peoples R China Alibaba Grp Hangzhou Peoples R China
This paper proposes LLaFS, the first attempt to leverage large language models (LLMs) in few-shot segmentation. In contrast to the conventional few-shot segmentation methods that only rely on the limited and biased in... 详细信息
来源: 评论
SocialCounterfactuals: Probing and Mitigating Intersectional Social Biases in vision-Language Models with Counterfactual Examples
SocialCounterfactuals: Probing and Mitigating Intersectional...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Howard, Phillip Madasu, Avinash Le, Tiep Moreno, Gustavo Lujan Bhiwandiwalla, Anahita Lal, Vasudev Intel Labs Santa Clara CA 95052 USA
While vision-language models (VLMs) have achieved remarkable performance improvements recently, there is growing evidence that these models also posses harmful biases with respect to social attributes such as gender a... 详细信息
来源: 评论
Spectral and Polarization vision: Spectro-polarimetric Real-world Dataset
Spectral and Polarization Vision: Spectro-polarimetric Real-...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jeon, Yujin Cho, Eunsue Kim, Youngchan Moon, Yunseong Omer, Khalid Heide, Felix Baek, Seung-Hwan POSTECH Pohang South Korea Meta Menlo Pk CA USA Princeton Univ Princeton NJ 08544 USA
Image datasets are essential not only in validating existing methods in computer vision but also in developing new methods. Many image datasets exist, consisting of trichromatic intensity images taken with RGB cameras... 详细信息
来源: 评论
On the Faithfulness of vision Transformer Explanations
On the Faithfulness of Vision Transformer Explanations
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, Junyi Kang, Weitai Tang, Hao Hong, Yuan Yan, Yan IIT Dept Comp Sci Chicago IL 60616 USA Carnegie Mellon Univ Robot Inst Pittsburgh PA 15213 USA Univ Connecticut Dept Comp Sci Storrs CT USA
To interpret vision Transformers, post-hoc explanations assign salience scores to input pixels, providing human-understandable heatmaps. However, whether these interpretations reflect true rationales behind the model&... 详细信息
来源: 评论
A Perspective on Deep vision Performance with Standard Image and Video Codecs
A Perspective on Deep Vision Performance with Standard Image...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Reich, Christoph Hahn, Oliver Cremers, Daniel Roth, Stefan Debnath, Biplob Tech Univ Darmstadt Darmstadt Germany Tech Univ Munich Munich Germany NEC Labs Amer Inc San Jose CA 95110 USA Hessian Ctr AI Hessian AI Darmstadt Germany Munich Ctr Machine Learning MCML Munich Germany
Resource-constrained hardware, such as edge devices or cell phones, often rely on cloud servers to provide the required computational resources for inference in deep vision models. However, transferring image and vide... 详细信息
来源: 评论
Action Scene Graphs for Long-Form Understanding of Egocentric Videos
Action Scene Graphs for Long-Form Understanding of Egocentri...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Rodin, Ivan Furnari, Antonino Min, Kyle Tripathi, Subarna Farinella, Giovanni Maria Univ Catania Catania Italy Intel Labs Hillsboro OR USA
We present Egocentric Action Scene Graphs (EASGs), a new representation for long-form understanding of egocentric videos. EASGs extend standard manually-annotated representations of egocentric videos, such as verb-nou... 详细信息
来源: 评论
A Comprehensive Analysis of Factors Impacting Membership Inference
A Comprehensive Analysis of Factors Impacting Membership Inf...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: DeAlcala, Daniel Mancera, Gonzalo Morales, Aythami Fierrez, Julian Tolosana, Ruben Ortega-Garcia, Javier Univ Autonoma Madrid Biometr & Data Pattern Analyt Lab Madrid Spain
We analyze various factors affecting the proper functioning of MIA and MINT, two research lines aimed at detecting data used for training. The difference between these lines lies in the environmental conditions, while... 详细信息
来源: 评论
Generative Rendering: Controllable 4D-Guided Video Generation with 2D Diffusion Models
Generative Rendering: Controllable 4D-Guided Video Generatio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Cai, Shengqu Ceylan, Duygu Gadelha, Matheus Huang, Chun-Hao Paul Wang, Tuanfeng Yang Wetzstein, Gordon Stanford Univ Stanford CA 94305 USA Adobe Res San Francisco CA USA
Traditional 3D content creation tools empower users to bring their imagination to life by giving them direct control over a scene's geometry, appearance, motion, and camera path. Creating computer-generated videos... 详细信息
来源: 评论