咨询与建议

限定检索结果

文献类型

  • 23,135 篇 会议
  • 91 篇 期刊文献
  • 15 册 图书

馆藏范围

  • 23,240 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,631 篇 工学
    • 11,162 篇 计算机科学与技术...
    • 3,337 篇 软件工程
    • 2,414 篇 机械工程
    • 1,662 篇 光学工程
    • 1,204 篇 电气工程
    • 973 篇 控制科学与工程
    • 738 篇 信息与通信工程
    • 381 篇 仪器科学与技术
    • 322 篇 生物工程
    • 239 篇 生物医学工程(可授...
    • 188 篇 电子科学与技术(可...
    • 109 篇 化学工程与技术
    • 104 篇 安全科学与工程
    • 99 篇 测绘科学与技术
    • 85 篇 建筑学
    • 82 篇 土木工程
    • 82 篇 交通运输工程
    • 56 篇 力学(可授工学、理...
  • 3,696 篇 医学
    • 3,684 篇 临床医学
    • 76 篇 基础医学(可授医学...
  • 3,137 篇 理学
    • 1,880 篇 物理学
    • 1,604 篇 数学
    • 547 篇 统计学(可授理学、...
    • 466 篇 生物学
    • 243 篇 系统科学
    • 107 篇 化学
  • 491 篇 管理学
    • 290 篇 图书情报与档案管...
    • 212 篇 管理科学与工程(可...
    • 74 篇 工商管理
  • 252 篇 艺术学
    • 251 篇 设计学(可授艺术学...
  • 58 篇 法学
  • 38 篇 农学
  • 25 篇 教育学
  • 19 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,396 篇 computer vision
  • 3,893 篇 pattern recognit...
  • 3,101 篇 training
  • 2,104 篇 computational mo...
  • 1,898 篇 visualization
  • 1,800 篇 cameras
  • 1,487 篇 feature extracti...
  • 1,475 篇 three-dimensiona...
  • 1,464 篇 shape
  • 1,447 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,234 篇 computer archite...
  • 1,213 篇 semantics
  • 1,112 篇 benchmark testin...
  • 1,111 篇 conferences
  • 1,104 篇 layout
  • 1,093 篇 object detection
  • 1,085 篇 computer science
  • 1,026 篇 codes
  • 907 篇 face recognition

机构

  • 137 篇 univ sci & techn...
  • 124 篇 univ chinese aca...
  • 121 篇 chinese univ hon...
  • 108 篇 tsinghua univers...
  • 108 篇 carnegie mellon ...
  • 105 篇 microsoft resear...
  • 97 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 university of sc...
  • 84 篇 zhejiang univers...
  • 81 篇 shanghai ai lab ...
  • 79 篇 university of ch...
  • 75 篇 shanghai jiao to...
  • 69 篇 microsoft res as...
  • 68 篇 alibaba grp peop...
  • 66 篇 adobe research
  • 65 篇 national laborat...
  • 64 篇 peking univ peop...
  • 61 篇 univ oxford oxfo...
  • 59 篇 peng cheng labor...

作者

  • 80 篇 van gool luc
  • 71 篇 timofte radu
  • 65 篇 zhang lei
  • 43 篇 luc van gool
  • 40 篇 yang yi
  • 37 篇 loy chen change
  • 34 篇 li stan z.
  • 33 篇 liu yang
  • 33 篇 xiaoou tang
  • 33 篇 murino vittorio
  • 33 篇 chen chen
  • 33 篇 qi tian
  • 33 篇 li fei-fei
  • 32 篇 tian qi
  • 32 篇 sun jian
  • 30 篇 ying shan
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 28 篇 li xin
  • 28 篇 hanqing lu

语言

  • 23,162 篇 英文
  • 52 篇 其他
  • 20 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition"
23241 条 记 录,以下是251-260 订阅
排序:
THRONE: An Object-based Hallucination Benchmark for the Free-form Generations of Large vision-Language Models
THRONE: An Object-based Hallucination Benchmark for the Free...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kaul, Prannay Li, Zhizhong Yang, Hao Dukler, Yonatan Swaminathan, Ashwin Taylor, C. J. Soatto, Stefano Univ Oxford VGG Oxford England AWS AI Labs Oxford England
Mitigating hallucinations in large vision-language models (LVLMs) remains an open problem. Recent benchmarks do not address hallucinations in open-ended free-form responses, which we term "Type I hallucinations&q... 详细信息
来源: 评论
Test-Time Adaptation for Depth Completion
Test-Time Adaptation for Depth Completion
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Park, Hyoungseob Gupta, Anjali Wong, Alex Yale Vision Lab New Haven CT 06501 USA
It is common to observe performance degradation when transferring models trained on some (source) datasets to target testing data due to a domain gap between them. Existing methods for bridging this gap, such as domai... 详细信息
来源: 评论
DePT: Decoupled Prompt Tuning
DePT: Decoupled Prompt Tuning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Ji Wu, Shihan Gao, Lianli Shen, Heng Tao Song, Jingkuan Univ Elect Sci & Technol China UESTC Chengdu Peoples R China UESTC Shenzhen Inst Adv Study Chengdu Peoples R China Tongji Univ Shanghai Peoples R China
This work breaks through the Base-New Tradeoff (BNT) dilemma in prompt tuning, i.e., the better the tuned model generalizes to the base (or target) task, the worse it generalizes to new tasks, and vice versa. Specific... 详细信息
来源: 评论
On the test-time zero-shot generalization of vision-language models: Do we really need prompt learning?
On the test-time zero-shot generalization of vision-language...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zanella, Maxime Ben Ayed, Ismail UCLouvain Louvain Belgium UMons Mons Belgium ETS Montreal Montreal PQ Canada
The development of large vision-language models, notably CLIP, has catalyzed research into effective adaptation techniques, with a particular focus on soft prompt tuning. Conjointly, test-time augmentation, which util... 详细信息
来源: 评论
Masked AutoDecoder is Effective Multi-Task vision Generalist
Masked AutoDecoder is Effective Multi-Task Vision Generalist
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Qiu, Han Huang, Jiaxing Gao, Peng Lu, Lewei Zhang, Xiaoqin Lu, Shijian Nanyang Technol Univ S Lab Singapore Singapore Shanghai Artificial Intelligence Lab Shanghai Peoples R China Sensetime Res Beijing Peoples R China Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou Peoples R China
Inspired by the success of general-purpose models in NLP, recent studies attempt to unify different vision tasks in the same sequence format and employ autoregressive Transformers for sequence prediction. They apply u... 详细信息
来源: 评论
Draw Step by Step: Reconstructing CAD Construction Sequences from Point Clouds via Multimodal Diffusion
Draw Step by Step: Reconstructing CAD Construction Sequences...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ma, Weijian Chen, Shuaiqi Lou, Yunzhong Li, Xueyang Zhou, Xiangdong Fudan Univ Sch Comp Sci & Technol Shanghai Peoples R China
Reconstructing CAD construction sequences from raw 3D geometry serves as an interface between real-world objects and digital designs. In this paper, we propose CAD-Diffuser, a multimodal diffusion scheme aiming at int... 详细信息
来源: 评论
Distilling vision-Language Models on Millions of Videos
Distilling Vision-Language Models on Millions of Videos
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Yue Zhao, Long Zhou, Xingyi Wu, Jialin Chu, Chun-Te Mia, Hui Schroff, Florian Adam, Hartwig Liu, Ting Gong, Boqing Krahenbuhl, Philipp Yuan, Liangzhe Google Res Mountain View CA 94043 USA Univ Texas Austin Austin TX 78712 USA
The recent advance in vision-language models is largely attributed to the abundance of image-text data. We aim to replicate this success for video-language models, but there simply is not enough human- curated video-t... 详细信息
来源: 评论
Hyper-MD: Mesh Denoising with Customized Parameters Aware of Noise Intensity and Geometric Characteristics
Hyper-MD: Mesh Denoising with Customized Parameters Aware of...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Xingtao Wei, Hongliang Fan, Xiaopeng Zhao, Debin Harbin Inst Technol Harbin Peoples R China
Mesh denoising (MD) is a critical task in geometry processing, as meshes from scanning or AIGC techniques are susceptible to noise contamination. The challenge of MD lies in the diverse nature of mesh facets in terms ... 详细信息
来源: 评论
GROUNDHOG : Grounding Large Language Models to Holistic Segmentation
GROUNDHOG : Grounding Large Language Models to Holistic Segm...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Yichi Qiao, Zhiqiao Gao, Xiaofeng Shakiah, Suhaila Gao, Qiaozi Chai, Joyce Univ Michigan Ann Arbor MI 48109 USA Amazon AGI Seattle WA USA
Most multimodal large language models (MLLMs) learn language-to-object grounding through causal language modeling where grounded objects are captured by bounding boxes as sequences of location tokens. This paradigm la... 详细信息
来源: 评论
SpatialVLM: Endowing vision-Language Models with Spatial Reasoning Capabilities
SpatialVLM: Endowing Vision-Language Models with Spatial Rea...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Boyuan Xu, Zhuo Kirman, Sean Ichter, Brian Sadigh, Dorsa Guibas, Leonidas Xia, Fei Google DeepMind London England Google Res Mountain View CA USA MIT 77 Massachusetts Ave Cambridge MA 02139 USA
Understanding and reasoning about spatial relationships is a fundamental capability for Visual Question Answering (VQA) and robotics. While vision Language Models (VLM) have demonstrated remarkable performance in cert... 详细信息
来源: 评论