咨询与建议

限定检索结果

文献类型

  • 23,135 篇 会议
  • 91 篇 期刊文献
  • 15 册 图书

馆藏范围

  • 23,240 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,631 篇 工学
    • 11,162 篇 计算机科学与技术...
    • 3,337 篇 软件工程
    • 2,414 篇 机械工程
    • 1,662 篇 光学工程
    • 1,204 篇 电气工程
    • 973 篇 控制科学与工程
    • 738 篇 信息与通信工程
    • 381 篇 仪器科学与技术
    • 322 篇 生物工程
    • 239 篇 生物医学工程(可授...
    • 188 篇 电子科学与技术(可...
    • 109 篇 化学工程与技术
    • 104 篇 安全科学与工程
    • 99 篇 测绘科学与技术
    • 85 篇 建筑学
    • 82 篇 土木工程
    • 82 篇 交通运输工程
    • 56 篇 力学(可授工学、理...
  • 3,696 篇 医学
    • 3,684 篇 临床医学
    • 76 篇 基础医学(可授医学...
  • 3,137 篇 理学
    • 1,880 篇 物理学
    • 1,604 篇 数学
    • 547 篇 统计学(可授理学、...
    • 466 篇 生物学
    • 243 篇 系统科学
    • 107 篇 化学
  • 491 篇 管理学
    • 290 篇 图书情报与档案管...
    • 212 篇 管理科学与工程(可...
    • 74 篇 工商管理
  • 252 篇 艺术学
    • 251 篇 设计学(可授艺术学...
  • 58 篇 法学
  • 38 篇 农学
  • 25 篇 教育学
  • 19 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,396 篇 computer vision
  • 3,893 篇 pattern recognit...
  • 3,101 篇 training
  • 2,104 篇 computational mo...
  • 1,898 篇 visualization
  • 1,800 篇 cameras
  • 1,487 篇 feature extracti...
  • 1,475 篇 three-dimensiona...
  • 1,464 篇 shape
  • 1,447 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,234 篇 computer archite...
  • 1,213 篇 semantics
  • 1,112 篇 benchmark testin...
  • 1,111 篇 conferences
  • 1,104 篇 layout
  • 1,093 篇 object detection
  • 1,085 篇 computer science
  • 1,026 篇 codes
  • 907 篇 face recognition

机构

  • 137 篇 univ sci & techn...
  • 124 篇 univ chinese aca...
  • 121 篇 chinese univ hon...
  • 108 篇 tsinghua univers...
  • 108 篇 carnegie mellon ...
  • 105 篇 microsoft resear...
  • 97 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 university of sc...
  • 84 篇 zhejiang univers...
  • 81 篇 shanghai ai lab ...
  • 79 篇 university of ch...
  • 75 篇 shanghai jiao to...
  • 69 篇 microsoft res as...
  • 68 篇 alibaba grp peop...
  • 66 篇 adobe research
  • 65 篇 national laborat...
  • 64 篇 peking univ peop...
  • 61 篇 univ oxford oxfo...
  • 59 篇 peng cheng labor...

作者

  • 80 篇 van gool luc
  • 71 篇 timofte radu
  • 65 篇 zhang lei
  • 43 篇 luc van gool
  • 40 篇 yang yi
  • 37 篇 loy chen change
  • 34 篇 li stan z.
  • 33 篇 liu yang
  • 33 篇 xiaoou tang
  • 33 篇 murino vittorio
  • 33 篇 chen chen
  • 33 篇 qi tian
  • 33 篇 li fei-fei
  • 32 篇 tian qi
  • 32 篇 sun jian
  • 30 篇 ying shan
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 28 篇 li xin
  • 28 篇 hanqing lu

语言

  • 23,162 篇 英文
  • 52 篇 其他
  • 20 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition"
23241 条 记 录,以下是301-310 订阅
排序:
MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-Task Learning
MTLoRA: A Low-Rank Adaptation Approach for Efficient Multi-T...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Agiza, Ahmed Neseem, Marina Reda, Sherief Brown Univ Providence RI 02912 USA
Adapting models pre-trained on large-scale datasets to a variety of downstream tasks is a common strategy in deep learning. Consequently, parameter-efficient fine-tuning methods have emerged as a promising way to adap... 详细信息
来源: 评论
MAPLM: A Real-World Large-Scale vision-Language Benchmark for Map and Traffic Scene Understanding
MAPLM: A Real-World Large-Scale Vision-Language Benchmark fo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Cao, Xu Zhou, Tong Ma, Yunsheng Ye, Wenqian Cui, Can Tang, Kun Cao, Zhipeng Liang, Kaizhao Wang, Ziran Rehg, James M. Zheng, Chao Tencent T Lab Palo Alto CA 94306 USA Univ Illinois Champaign IL USA Purdue Univ W Lafayette IN USA Univ Virginia Charlottesville VA USA SambaNova Syst Inc Palo Alto CA USA
vision-language generative AI has demonstrated remarkable promise for empowering cross-modal scene understanding of autonomous driving and high-definition (HD) map systems. However, current benchmark datasets lack mul... 详细信息
来源: 评论
DiCo-NeRF: Difference of Cosine Similarity for Neural Rendering of Fisheye Driving Scenes
DiCo-NeRF: Difference of Cosine Similarity for Neural Render...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Choi, Jiho Hwang, Gyutae Lee, Sang Jun Jeonbuk Natl Univ Jeonju South Korea
Neural radiance fields have emerged in the field of autonomous driving, which contributes to improve perception of the complex 3D environment through the reconstruction of geometry and appearance. Moving objects and s... 详细信息
来源: 评论
Leveraging vision-Language Models for Improving Domain Generalization in Image Classification
Leveraging Vision-Language Models for Improving Domain Gener...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Addepalli, Sravanti Asokan, Ashish Ramayee Sharma, Lakshay Babu, R. Venkatesh Indian Inst Sci Vision & AI Lab Bangalore Karnataka India
vision-Language Models (VLMs) such as CLIP are trained on large amounts of image-text pairs, resulting in remarkable generalization across several data distributions. However, in several cases, their expensive trainin... 详细信息
来源: 评论
Beyond Image Super-Resolution for Image recognition with Task-Driven Perceptual Loss
Beyond Image Super-Resolution for Image Recognition with Tas...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kim, Jaeha Oh, Junghun Lee, Kyoung Mu Seoul Natl Univ Dept ECE Seoul South Korea Seoul Natl Univ ASRI Seoul South Korea Seoul Natl Univ IPAI Seoul South Korea
In real-world scenarios, image recognition tasks, such as semantic segmentation and object detection, often pose greater challenges due to the lack of information available within low-resolution (LR) content. Image su... 详细信息
来源: 评论
Differentiable Shadow Mapping for Efficient Inverse Graphics
Differentiable Shadow Mapping for Efficient Inverse Graphics
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Worchel, Markus Alexa, Marc TU Berlin Berlin Germany
We show how shadows can be efficiently generated in differentiable rendering of triangle meshes. Our central observation is that pre-filtered shadow mapping, a technique for approximating shadows based on rendering fr... 详细信息
来源: 评论
Sat2Cap: Mapping Fine-Grained Textual Descriptions from Satellite Images
Sat2Cap: Mapping Fine-Grained Textual Descriptions from Sate...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dhakal, Aayush Ahmad, Adeel Khanal, Subash Sastry, Srikumar Kerner, Hannah Jacobs, Nathan Washington Univ St Louis MO 63110 USA Taylor Geospatial Inst St Louis MO USA Arizona State Univ Tempe AZ 85287 USA
We propose a weakly supervised approach for creating maps using free-form textual descriptions. We refer to this work of creating textual maps as zero-shot mapping. Prior works have approached mapping tasks by develop... 详细信息
来源: 评论
Improved Zero-Shot Classification by Adapting VLMs with Text Descriptions
Improved Zero-Shot Classification by Adapting VLMs with Text...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Saha, Oindrila Van Horn, Grant Maji, Subhransu Univ Massachusetts Amherst MA 01003 USA
The zero-shot performance of existing vision-language models (VLMs) such as CLIP [29] is limited by the availability of large-scale, aligned image and text datasets in specific domains. In this work, we leverage two c... 详细信息
来源: 评论
Grounding Everything: Emerging Localization Properties in vision-Language Transformers
Grounding Everything: Emerging Localization Properties in Vi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bousselham, Walid Petersen, Felix Ferrari, Vittorio Kuehne, Hilde Univ Bonn Bonn Germany Goethe Univ Frankfurt Frankfurt Germany Stanford Univ Stanford CA 94305 USA Synthesia Io London England MIT IBM Watson AI Lab Cambridge MA USA
vision-language foundation models have shown remarkable performance in various zero-shot settings such as image retrieval, classification, or captioning. But so far, those models seem to fall behind when it comes to z... 详细信息
来源: 评论
EfficientSAM: Leveraged Masked Image Pretraining for Efficient Segment Anything
EfficientSAM: Leveraged Masked Image Pretraining for Efficie...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xiong, Yunyang Varadarajan, Bala Wu, Lemeng Xiang, Xiaoyu Xiao, Fanyi Zhu, Chenchen Dai, Xiaoliang Wang, Dilin Sun, Fei Iandola, Forrest Krishnamoorthi, Raghuraman Chandra, Vikas Meta AI Res Menlo Pk CA 94025 USA
Segment Anything Model (SAM) has emerged as a powerful tool for numerous vision applications. A key component that drives the impressive performance for zero-shot transfer and high versatility is a super large Transfo... 详细信息
来源: 评论