咨询与建议

限定检索结果

文献类型

  • 23,135 篇 会议
  • 91 篇 期刊文献
  • 15 册 图书

馆藏范围

  • 23,240 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,631 篇 工学
    • 11,162 篇 计算机科学与技术...
    • 3,337 篇 软件工程
    • 2,414 篇 机械工程
    • 1,662 篇 光学工程
    • 1,204 篇 电气工程
    • 973 篇 控制科学与工程
    • 738 篇 信息与通信工程
    • 381 篇 仪器科学与技术
    • 322 篇 生物工程
    • 239 篇 生物医学工程(可授...
    • 188 篇 电子科学与技术(可...
    • 109 篇 化学工程与技术
    • 104 篇 安全科学与工程
    • 99 篇 测绘科学与技术
    • 85 篇 建筑学
    • 82 篇 土木工程
    • 82 篇 交通运输工程
    • 56 篇 力学(可授工学、理...
  • 3,696 篇 医学
    • 3,684 篇 临床医学
    • 76 篇 基础医学(可授医学...
  • 3,137 篇 理学
    • 1,880 篇 物理学
    • 1,604 篇 数学
    • 547 篇 统计学(可授理学、...
    • 466 篇 生物学
    • 243 篇 系统科学
    • 107 篇 化学
  • 491 篇 管理学
    • 290 篇 图书情报与档案管...
    • 212 篇 管理科学与工程(可...
    • 74 篇 工商管理
  • 252 篇 艺术学
    • 251 篇 设计学(可授艺术学...
  • 58 篇 法学
  • 38 篇 农学
  • 25 篇 教育学
  • 19 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,396 篇 computer vision
  • 3,893 篇 pattern recognit...
  • 3,101 篇 training
  • 2,104 篇 computational mo...
  • 1,898 篇 visualization
  • 1,800 篇 cameras
  • 1,487 篇 feature extracti...
  • 1,475 篇 three-dimensiona...
  • 1,464 篇 shape
  • 1,447 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,234 篇 computer archite...
  • 1,213 篇 semantics
  • 1,112 篇 benchmark testin...
  • 1,111 篇 conferences
  • 1,104 篇 layout
  • 1,093 篇 object detection
  • 1,085 篇 computer science
  • 1,026 篇 codes
  • 907 篇 face recognition

机构

  • 137 篇 univ sci & techn...
  • 124 篇 univ chinese aca...
  • 121 篇 chinese univ hon...
  • 108 篇 tsinghua univers...
  • 108 篇 carnegie mellon ...
  • 105 篇 microsoft resear...
  • 97 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 university of sc...
  • 84 篇 zhejiang univers...
  • 81 篇 shanghai ai lab ...
  • 79 篇 university of ch...
  • 75 篇 shanghai jiao to...
  • 69 篇 microsoft res as...
  • 68 篇 alibaba grp peop...
  • 66 篇 adobe research
  • 65 篇 national laborat...
  • 64 篇 peking univ peop...
  • 61 篇 univ oxford oxfo...
  • 59 篇 peng cheng labor...

作者

  • 80 篇 van gool luc
  • 71 篇 timofte radu
  • 65 篇 zhang lei
  • 43 篇 luc van gool
  • 40 篇 yang yi
  • 37 篇 loy chen change
  • 34 篇 li stan z.
  • 33 篇 liu yang
  • 33 篇 xiaoou tang
  • 33 篇 murino vittorio
  • 33 篇 chen chen
  • 33 篇 qi tian
  • 33 篇 li fei-fei
  • 32 篇 tian qi
  • 32 篇 sun jian
  • 30 篇 ying shan
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 28 篇 li xin
  • 28 篇 hanqing lu

语言

  • 23,162 篇 英文
  • 52 篇 其他
  • 20 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition"
23241 条 记 录,以下是4821-4830 订阅
排序:
Closing the Loop: Joint Rain Generation and Removal via Disentangled Image Translation
Closing the Loop: Joint Rain Generation and Removal via Dise...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ye, Yuntong Chang, Yi Zhou, Hanyu Yan, Luxin Huazhong Univ Sci & Technol Sch Artificial Intelligence & Automat Natl Key Lab Sci & Technol Multispectral Informat Wuhan Peoples R China Peng Cheng Lab AI Ctr Shenzhen Peoples R China
Existing deep learning-based image deraining methods have achieved promising performance for synthetic rainy images, typically rely on the pairs of sharp images and simulated rainy counterparts. However, these methods... 详细信息
来源: 评论
Mesh Saliency: An Independent Perceptual Measure or A Derivative of Image Saliency?
Mesh Saliency: An Independent Perceptual Measure or A Deriva...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Song, Ran Zhang, Wei Zhao, Yitian Liu, Yonghuai Rosin, Paul L. Shandong Univ Sch Control Sci & Engn Jinan Peoples R China Shandong Univ Inst Brain & Brain Inspired Sci Jinan Peoples R China Chinese Acad Sci Ningbo Inst Mat Technol & Engn Ningbo Peoples R China Edge Hill Univ Dept Comp Sci Ormskirk England Cardiff Univ Sch Comp Sci & Informat Cardiff S Glam Wales
While mesh saliency aims to predict regional importance of 3D surfaces in agreement with human visual perception and is well researched in computer vision and graphics, latest work with eye-tracking experiments shows ... 详细信息
来源: 评论
Embracing Uncertainty: Decoupling and De-bias for Robust Temporal Grounding
Embracing Uncertainty: Decoupling and De-bias for Robust Tem...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhou, Hao Zhang, Chongyang Luo, Yan Chen, Yanjun Hu, Chuanping Shanghai Jiao Tong Univ Sch Elect Informat & Elect Engn Shanghai Peoples R China Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai Peoples R China Zhengzhou Univ Zhengzhou Peoples R China
Temporal grounding aims to localize temporal boundaries within untrimmed videos by language queries, but it faces the challenge of two types of inevitable human uncertainties: query uncertainty and label uncertainty. ... 详细信息
来源: 评论
Toward Interactive Modulation for Photo-Realistic Image Restoration
Toward Interactive Modulation for Photo-Realistic Image Rest...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Cai, Haoming He, Jingwen Qiao, Yu Dong, Chao Chinese Acad Sci Shenzhen Inst Adv Technol Key Lab Human Machine Intelligence Synergy Syst Shenzhen Peoples R China Shanghai AI Lab Shanghai Peoples R China Shenzhen Inst Artificial Intelligence & Robot Soc SIAT Branch Shenzhen Peoples R China
Modulating image restoration level aims to generate a restored image by altering a factor that represents the restoration strength. Previous works mainly focused on optimizing the mean squared reconstruction error, wh... 详细信息
来源: 评论
Wide-Baseline Multi-Camera Calibration using Person Re-Identification
Wide-Baseline Multi-Camera Calibration using Person Re-Ident...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xu, Yan Li, Yu-Jhe Weng, Xinshuo Kitani, Kris Carnegie Mellon Univ Pittsburgh PA 15213 USA
We address the problem of estimating the 3D pose of a network of cameras for large-environment wide-baseline scenarios, e.g., cameras for construction sites, sports stadiums, and public spaces. This task is challengin... 详细信息
来源: 评论
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods and Results
NTIRE 2022 Challenge on High Dynamic Range Imaging: Methods ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Perez-Pellitero, Eduardo Catley-Chandar, Sibi Shaw, Richard Leonardis, Ales Timofte, Radu Zhang, Zexin Liu, Cen Peng, Yunbo Lin, Yue Yu, Gaocheng Zhang, Jin Ma, Zhe Wang, Hongbin Chen, Xiangyu Wang, Xintao Wu, Haiwei Liu, Lin Dong, Chao Zhou, Jiantao Yan, Qingsen Zhang, Song Chen, Weiye Liu, Yuhang Zhang, Zhen Zhang, Yanning Shi, Javen Qinfeng Gong, Dong Zhu, Dan Sun, Mengdi Chen, Guannan Hu, Yang Li, Haowei Zou, Baozhu Liu, Zhen Lin, Wenjie Jiang, Ting Jiang, Chengzhi Li, Xinpeng Han, Mingyan Fan, Haoqiang Sun, Jian Liu, Shuaicheng Marin-Vega, Juan Sloth, Michael Schneider-Kamp, Peter Rottger, Richard Li, Chunyang Bao, Long He, Gang Xu, Ziyao Xu, Li Zhan, Gen Sun, Ming Wen, Xing Li, Junlin Li, Jinjing Li, Chenghua Gang, Ruipeng Li, Fangya Liu, Chenming Feng, Shuang Lei, Fei Liu, Rui Ruan, Junxiang Dai, Tianhong Li, Wei Lu, Zhan Liu, Hengyan Huang, Peian Ren, Guangyu Luo, Yonglin Liu, Chang Tu, Qiang Ma, Sai Cao, Yizhen Tel, Steven Heyrman, Barthelemy Ginhac, Dominique Lee, Chul Kim, Gahyeon Park, Seonghyun An Gia Vien Truong Thanh Nhat Mai Yoon, Howoon Tu Vo Holston, Alexander Zaheer, Sheir Park, Chan Y. Huawei Noahs Ark Lab Hong Kong Peoples R China Univ Wurzburg Wurzburg Germany Swiss Fed Inst Technol Zurich Switzerland Netease Games AI Lab Shanghai Peoples R China AntGroup Hangzhou Peoples R China Univ Macau Macau Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China Tencent PCG Shenzhen Peoples R China Univ Sci & Technol China Hefei Peoples R China Univ Adelaide Adelaide SA Australia Xidian Univ Xian Peoples R China Northwestern Polytech Univ Xian Peoples R China Univ New South Wales Sydney NSW Australia BOE Technol Grp Co Ltd Beijing Peoples R China CZUR Technol Grp Co Ltd Liaoning Peoples R China Megvii Technol Beijing Peoples R China Univ Southern Denmark Dept Math & Comp Sci IMADA Aarhus Denmark Esoft Syst Odense Denmark Xiaomi Beijing Peoples R China ByteDance Beijing Peoples R China Kuaishou Technol Beijing Peoples R China Commun Univ China Beijing Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China NRTA Acad Broadcasting Sci Beijing Peoples R China Tetras AI Technol Hangzhou Peoples R China Imperial Coll London London England Tsinghua Univ Beijing Peoples R China Univ Edinburgh Edinburgh Midlothian Scotland Sun Yat Sen Univ Guangzhou Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China Beijing Inst Technol Beijing Peoples R China NRTA Acad Broadcasting Sciencience Beijing Peoples R China Univ Burgundy ImViA Lab Dijon France Dongguk Univ Dept Multimedia Engn Seoul South Korea Gachon Univ Seongnam South Korea KC Machine Learning Lab Seoul South Korea
This paper reviews the challenge on constrained high dynamic range (HDR) imaging that was part of the New Trends in Image Restoration and Enhancement (NTIRE) workshop, held in conjunction with CVPR 2022. This manuscri... 详细信息
来源: 评论
Augmentation Strategies for Learning with Noisy Labels
Augmentation Strategies for Learning with Noisy Labels
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Nishi, Kento Ding, Yi Rich, Alex Hollerer, Tobias Lynbrook High Sch San Jose CA 95129 USA Univ Calif Santa Barbara Santa Barbara CA 93106 USA
Imperfect labels are ubiquitous in real-world datasets. Several recent successful methods for training deep neural networks (DNNs) robust to label noise have used two primary techniques: filtering samples based on los... 详细信息
来源: 评论
BBAM: Bounding Box Attribution Map for Weakly Supervised Semantic and Instance Segmentation
BBAM: Bounding Box Attribution Map for Weakly Supervised Sem...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lee, Jungbeom Yi, Jihun Shin, Chaehun Yoon, Sungroh Seoul Natl Univ Dept Elect & Comp Engn Seoul South Korea Seoul Natl Univ ISRC INMC ASRI Seoul South Korea Seoul Natl Univ Inst Engn Res Seoul South Korea
Weakly supervised segmentation methods using bounding box annotations focus on obtaining a pixel-level mask from each box containing an object. Existing methods typically depend on a class-agnostic mask generator, whi... 详细信息
来源: 评论
Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans
Neural Body: Implicit Neural Representations with Structured...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Peng, Sida Zhang, Yuanqing Xu, Yinghao Wang, Qianqian Shuai, Qing Bao, Hujun Zhou, Xiaowei Zhejiang Univ Hangzhou Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Cornell Univ Ithaca NY 14853 USA
This paper addresses the challenge of novel view synthesis for a human performer from a very sparse set of camera views. Some recent works have shown that learning implicit neural representations of 3D scenes achieves... 详细信息
来源: 评论
Anomaly Detection in Video via Self-Supervised and Multi-Task Learning
Anomaly Detection in Video via Self-Supervised and Multi-Tas...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Georgescu, Mariana-Iuliana Barbalau, Antonio Ionescu, Radu Tudor Khan, Fahad Shahbaz Popescu, Marius Shah, Mubarak Univ Bucharest Bucharest Romania MBZ Univ Artificial Intelligence Abu Dhabi U Arab Emirates SecurifAI Bucharest Romania Univ Cent Florida Orlando FL 32816 USA
Anomaly detection in video is a challenging computer vision problem. Due to the lack of anomalous events at training time, anomaly detection requires the design of learning methods without full supervision. In this pa... 详细信息
来源: 评论