咨询与建议

限定检索结果

文献类型

  • 23,134 篇 会议
  • 91 篇 期刊文献
  • 15 册 图书

馆藏范围

  • 23,239 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,630 篇 工学
    • 11,162 篇 计算机科学与技术...
    • 3,337 篇 软件工程
    • 2,414 篇 机械工程
    • 1,662 篇 光学工程
    • 1,204 篇 电气工程
    • 972 篇 控制科学与工程
    • 738 篇 信息与通信工程
    • 381 篇 仪器科学与技术
    • 322 篇 生物工程
    • 239 篇 生物医学工程(可授...
    • 188 篇 电子科学与技术(可...
    • 109 篇 化学工程与技术
    • 104 篇 安全科学与工程
    • 99 篇 测绘科学与技术
    • 85 篇 建筑学
    • 82 篇 土木工程
    • 82 篇 交通运输工程
    • 56 篇 力学(可授工学、理...
  • 3,696 篇 医学
    • 3,684 篇 临床医学
    • 76 篇 基础医学(可授医学...
  • 3,137 篇 理学
    • 1,880 篇 物理学
    • 1,604 篇 数学
    • 547 篇 统计学(可授理学、...
    • 466 篇 生物学
    • 243 篇 系统科学
    • 107 篇 化学
  • 491 篇 管理学
    • 290 篇 图书情报与档案管...
    • 212 篇 管理科学与工程(可...
    • 74 篇 工商管理
  • 252 篇 艺术学
    • 251 篇 设计学(可授艺术学...
  • 58 篇 法学
  • 38 篇 农学
  • 25 篇 教育学
  • 19 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,395 篇 computer vision
  • 3,893 篇 pattern recognit...
  • 3,101 篇 training
  • 2,104 篇 computational mo...
  • 1,897 篇 visualization
  • 1,799 篇 cameras
  • 1,487 篇 feature extracti...
  • 1,475 篇 three-dimensiona...
  • 1,464 篇 shape
  • 1,447 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,234 篇 computer archite...
  • 1,213 篇 semantics
  • 1,112 篇 benchmark testin...
  • 1,111 篇 conferences
  • 1,104 篇 layout
  • 1,093 篇 object detection
  • 1,085 篇 computer science
  • 1,026 篇 codes
  • 907 篇 face recognition

机构

  • 137 篇 univ sci & techn...
  • 124 篇 univ chinese aca...
  • 121 篇 chinese univ hon...
  • 108 篇 tsinghua univers...
  • 108 篇 carnegie mellon ...
  • 105 篇 microsoft resear...
  • 97 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 university of sc...
  • 84 篇 zhejiang univers...
  • 81 篇 shanghai ai lab ...
  • 79 篇 university of ch...
  • 75 篇 shanghai jiao to...
  • 69 篇 microsoft res as...
  • 68 篇 alibaba grp peop...
  • 66 篇 adobe research
  • 65 篇 national laborat...
  • 64 篇 peking univ peop...
  • 61 篇 univ oxford oxfo...
  • 59 篇 peng cheng labor...

作者

  • 80 篇 van gool luc
  • 71 篇 timofte radu
  • 65 篇 zhang lei
  • 43 篇 luc van gool
  • 40 篇 yang yi
  • 37 篇 loy chen change
  • 34 篇 li stan z.
  • 33 篇 liu yang
  • 33 篇 xiaoou tang
  • 33 篇 murino vittorio
  • 33 篇 chen chen
  • 33 篇 qi tian
  • 33 篇 li fei-fei
  • 32 篇 tian qi
  • 32 篇 sun jian
  • 30 篇 ying shan
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 28 篇 li xin
  • 28 篇 hanqing lu

语言

  • 23,161 篇 英文
  • 52 篇 其他
  • 20 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition"
23240 条 记 录,以下是4911-4920 订阅
排序:
Modulating Image Restoration with Continual Levels via Adaptive Feature Modification Layers  32
Modulating Image Restoration with Continual Levels via Adapt...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: He, Jingwen Dong, Chao Qiao, Yu Chinese Acad Sci Shenzhen Inst Adv Technol ShenZhen Key Lab Comp Vis & Pattern Recognit SIAT SenseTime Joint Lab Shenzhen Guangdong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
In image restoration tasks, like denoising and super-resolution, continual modulation of restoration levels is of great importance for real-world applications, but has failed most of existing deep learning based image... 详细信息
来源: 评论
Leverage Your Local and Global Representations: A New Self-Supervised Learning Strategy
Leverage Your Local and Global Representations: A New Self-S...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Tong Qiu, Congpei Ke, Wei Suesstrunk, Sabine Salzmann, Mathieu Ecole Polytech Fed Lausanne Sch Comp & Commun Sci Lausanne Switzerland Xi An Jiao Tong Univ Xian Peoples R China
Self-supervised learning (SSL) methods aim to learn view-invariant representations by maximizing the similarity between the features extracted from different crops of the same image regardless of cropping size and con... 详细信息
来源: 评论
Super-Resolution Appearance Transfer for 4D Human Performances
Super-Resolution Appearance Transfer for 4D Human Performanc...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Pesavento, Marco Volino, Marco Hilton, Adrian Univ Surrey Ctr Vis Speech & Signal Proc Guildford Surrey England
A common problem in the 4D reconstruction of people from multi-view video is the quality of the captured dynamic texture appearance which depends on both the camera resolution and capture volume. Typically the require... 详细信息
来源: 评论
Roses are Red, Violets are Blue... But Should VQA expect Them To?
Roses are Red, Violets are Blue... But Should VQA expect The...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kervadec, Corentin Antipov, Grigory Baccouche, Moez Wolf, Christian Cesson Seyigne Orange France INSA Lyon LIRIS UMR CNRS 5205 Lyon France
Models for Visual Question Answering (VQA) are notorious for their tendency to rely on dataset biases, as the large and unbalanced diversity of questions and concepts involved and tends to prevent models from learning... 详细信息
来源: 评论
Exploring Category-Agnostic Clusters for Open-Set Domain Adaptation
Exploring Category-Agnostic Clusters for Open-Set Domain Ada...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Pan, Yingwei Yao, Ting Li, Yehao Ngo, Chong-Wah Mei, Tao JD AI Res Beijing Peoples R China City Univ Hong Kong Kowloon Hong Kong Peoples R China
Unsupervised domain adaptation has received significant attention in recent years. Most of existing works tackle the closed-set scenario, assuming that the source and target domains share the exactly same categories. ... 详细信息
来源: 评论
Reusing the Task-specific Classifier as a Discriminator: Discriminator-free Adversarial Domain Adaptation
Reusing the Task-specific Classifier as a Discriminator: Dis...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Lin Chen, Huaian Wei, Zhixiang Jin, Xin Tan, Xiao Jin, Yi Chen, Enhong Univ Sci & Technol China Hefei Peoples R China
Adversarial learning has achieved remarkable performances for unsupervised domain adaptation (UDA). Existing adversarial UDA methods typically adopt an additional discriminator to play the min-max game with a feature ... 详细信息
来源: 评论
All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
All Labels Are Not Created Equal: Enhancing Semi-supervision...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Nassar, Islam Herath, Samitha Abbasnejad, Ehsan Buntine, Wray Haffari, Gholamreza Monash Univ Dept Data Sci & AI Fac IT Clayton Vic Australia Univ Adelaide Australian Inst Machine Learning Adelaide SA Australia
Pseudo-labeling is a key component in semi-supervised learning (SSL). It relies on iteratively using the model to generate artificial labels for the unlabeled data to train against. A common property among its various... 详细信息
来源: 评论
Improving Adversarial Transferability via Neuron Attribution-based Attacks
Improving Adversarial Transferability via Neuron Attribution...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Jianping Wu, Weibin Huang, Jen-tse Huang, Yizhan Wang, Wenxuan Su, Yuxin Lyu, Michael R. Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Sun Yat Sen Univ Sch Software Engn Guangzhou Peoples R China
Deep neural networks (DNNs) are known to be vulnerable to adversarial examples. It is thus imperative to devise effective attack algorithms to identify the deficiencies of DNNs beforehand in security-sensitive applica... 详细信息
来源: 评论
Rethinking Semantic Segmentation: A Prototype View
Rethinking Semantic Segmentation: A Prototype View
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhou, Tianfei Wang, Wenguan Konukoglu, Ender Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Univ Technol Sydney AAII ReLER Sydney NSW Australia
Prevalent semantic segmentation solutions, despite their different network designs (FCN based or attention based) and mask decoding strategies (parametric softmax based or pixel-query based), can be placed in one cate... 详细信息
来源: 评论
The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth
The Temporal Opportunist: Self-Supervised Multi-Frame Monocu...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Watson, Jamie Mac Aodha, Oisin Prisacariu, Victor Brostow, Gabriel Firman, Michael Niantic San Francisco CA 94111 USA Univ Edinburgh Edinburgh Midlothian Scotland Univ Oxford Oxford England UCL London England
Self-supervised monocular depth estimation networks are trained to predict scene depth using nearby frames as a supervision signal during training. However, for many applications, sequence information in the form of v... 详细信息
来源: 评论