咨询与建议

限定检索结果

文献类型

  • 23,134 篇 会议
  • 91 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 23,227 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 13,630 篇 工学
    • 11,162 篇 计算机科学与技术...
    • 3,337 篇 软件工程
    • 2,414 篇 机械工程
    • 1,662 篇 光学工程
    • 1,204 篇 电气工程
    • 972 篇 控制科学与工程
    • 738 篇 信息与通信工程
    • 381 篇 仪器科学与技术
    • 322 篇 生物工程
    • 239 篇 生物医学工程(可授...
    • 188 篇 电子科学与技术(可...
    • 109 篇 化学工程与技术
    • 104 篇 安全科学与工程
    • 99 篇 测绘科学与技术
    • 85 篇 建筑学
    • 82 篇 土木工程
    • 82 篇 交通运输工程
    • 56 篇 力学(可授工学、理...
  • 3,696 篇 医学
    • 3,684 篇 临床医学
    • 76 篇 基础医学(可授医学...
  • 3,137 篇 理学
    • 1,880 篇 物理学
    • 1,604 篇 数学
    • 547 篇 统计学(可授理学、...
    • 466 篇 生物学
    • 243 篇 系统科学
    • 107 篇 化学
  • 491 篇 管理学
    • 290 篇 图书情报与档案管...
    • 212 篇 管理科学与工程(可...
    • 74 篇 工商管理
  • 252 篇 艺术学
    • 251 篇 设计学(可授艺术学...
  • 58 篇 法学
  • 38 篇 农学
  • 25 篇 教育学
  • 19 篇 经济学
  • 10 篇 军事学
  • 3 篇 文学

主题

  • 10,395 篇 computer vision
  • 3,883 篇 pattern recognit...
  • 3,101 篇 training
  • 2,104 篇 computational mo...
  • 1,897 篇 visualization
  • 1,799 篇 cameras
  • 1,487 篇 feature extracti...
  • 1,475 篇 three-dimensiona...
  • 1,464 篇 shape
  • 1,447 篇 image segmentati...
  • 1,287 篇 robustness
  • 1,234 篇 computer archite...
  • 1,213 篇 semantics
  • 1,112 篇 benchmark testin...
  • 1,111 篇 conferences
  • 1,104 篇 layout
  • 1,093 篇 object detection
  • 1,085 篇 computer science
  • 1,026 篇 codes
  • 907 篇 face recognition

机构

  • 137 篇 univ sci & techn...
  • 124 篇 univ chinese aca...
  • 121 篇 chinese univ hon...
  • 108 篇 tsinghua univers...
  • 108 篇 carnegie mellon ...
  • 104 篇 microsoft resear...
  • 97 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 university of sc...
  • 84 篇 zhejiang univers...
  • 81 篇 shanghai ai lab ...
  • 79 篇 university of ch...
  • 75 篇 shanghai jiao to...
  • 69 篇 microsoft res as...
  • 68 篇 alibaba grp peop...
  • 66 篇 adobe research
  • 65 篇 national laborat...
  • 64 篇 peking univ peop...
  • 61 篇 univ oxford oxfo...
  • 59 篇 peng cheng labor...

作者

  • 80 篇 van gool luc
  • 71 篇 timofte radu
  • 65 篇 zhang lei
  • 43 篇 luc van gool
  • 40 篇 yang yi
  • 37 篇 loy chen change
  • 34 篇 li stan z.
  • 33 篇 liu yang
  • 33 篇 murino vittorio
  • 33 篇 chen chen
  • 33 篇 qi tian
  • 33 篇 li fei-fei
  • 32 篇 xiaoou tang
  • 32 篇 tian qi
  • 32 篇 sun jian
  • 30 篇 ying shan
  • 30 篇 pascal fua
  • 29 篇 darrell trevor
  • 28 篇 li xin
  • 28 篇 hanqing lu

语言

  • 23,149 篇 英文
  • 52 篇 其他
  • 20 篇 中文
  • 5 篇 土耳其文
  • 2 篇 日文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition"
23228 条 记 录,以下是4981-4990 订阅
排序:
Triple-cooperative Video Shadow Detection
Triple-cooperative Video Shadow Detection
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Zhihao Wan, Liang Zhu, Lei Shen, Jia Fu, Huazhu Liu, Wennan Qin, Jing Tianjin Univ Coll Intelligence & Comp Tianjin Peoples R China Univ Cambridge Dept Appl Math & Theoret Phys Cambridge England Inception Inst Artificial Intelligence Abu Dhabi U Arab Emirates Tianjin Univ Acad Med Engn & Translat Med Tianjin Peoples R China Hong Kong Polytech Univ Hong Kong Peoples R China
Shadow detection in a single image has received significant research interests in recent years. However, much fewer works have been explored in shadow detection over dynamic scenes. The bottleneck is the lack of a wel... 详细信息
来源: 评论
Learning Fine-Grained Segmentation of 3D Shapes without Part Labels
Learning Fine-Grained Segmentation of 3D Shapes without Part...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Xiaogang Sun, Xun Cao, Xinyu Xu, Kai Zhou, Bin Southwest Univ Chongqing Peoples R China Beihang Univ State Key Lab Virtual Real Technol & Syst Beijing Peoples R China Natl Univ Def Technol Changsha Peoples R China
Learning-based 3D shape segmentation is usually formulated as a semantic labeling problem, assuming that all parts of training shapes are annotated with a given set of tags. This assumption, however, is impractical fo... 详细信息
来源: 评论
Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks
Neural Parts: Learning Expressive 3D Shape Abstractions with...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Paschalidou, Despoina Katharopoulos, Angelos Geiger, Andreas Fidler, Sanja Max Planck Inst Intelligent Syst Tubingen Tubingen Germany Univ Tubingen Tubingen Germany Idiap Res Inst Martigny Switzerland Ecole Polytech Fed Lausanne EPFL Lausanne Switzerland Max Planck ETH Ctr Learning Syst Zurich Switzerland NVIDIA Santa Clara CA 95051 USA Univ Toronto Toronto ON Canada Vector Inst Toronto ON Canada
Impressive progress in 3D shape extraction led to representations that can capture object geometries with high fidelity. In parallel, primitive-based methods seek to represent objects as semantically consistent part a... 详细信息
来源: 评论
STMTrack: Template-free Visual Tracking with Space-time Memory Networks
STMTrack: Template-free Visual Tracking with Space-time Memo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Fu, Zhihong Liu, Qingjie Fu, Zehua Wang, Yunhong Beihang Univ State Key Lab Virtual Real Technol & Syst Beijing Peoples R China Beihang Univ Hangzhou Innovat Inst Beijing Peoples R China
Boosting performance of the offline trained siamese trackers is getting harder nowadays since the fixed information of the template cropped from the first frame has been almost thoroughly mined, but they are poorly ca... 详细信息
来源: 评论
DeepACG: Co-Saliency Detection via Semantic-aware Contrast Gromov-Wasserstein Distance
DeepACG: Co-Saliency Detection via Semantic-aware Contrast G...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Kaihua Dong, Mingliang Liu, Bo Yuan, Xiao-Tong Liu, Qingshan Nanjing Univ Informat Sci & Technol Sch Comp & Software Nanjing Peoples R China Nanjing Univ Informat Sci & Technol Sch Automat Nanjing Peoples R China JD Digits Mountain View CA 94043 USA
The objective of co-saliency detection is to segment the co-occurring salient objects in a group of images. To address this task, we introduce a new deep network architecture via semantic-aware contrast Gromov-Wassers... 详细信息
来源: 评论
Continual Domain Adaptation through Pruning-aided Domain-specific Weight Modulation
Continual Domain Adaptation through Pruning-aided Domain-spe...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Prasanna B Sunandini Sanyal R. Venkatesh Babu Vision and AI Lab Indian Institute of Science Bengaluru
In this paper, we propose to develop a method to address unsupervised domain adaptation (UDA) in a practical setting of continual learning (CL). The goal is to update the model on continually changing domains while pr...
来源: 评论
PMP-Net: Point Cloud Completion by Learning Multi-step Point Moving Paths
PMP-Net: Point Cloud Completion by Learning Multi-step Point...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wen, Xin Xiang, Peng Han, Zhizhong Cao, Yan-Pei Wan, Pengfei Zheng, Wen Liu, Yu-Shen Tsinghua Univ Sch Software BNRist Beijing Peoples R China Wayne State Univ Dept Comp Sci Detroit MI 48202 USA Kuaishou Technol Y Tech Beijing Peoples R China
The task of point cloud completion aims to predict the missing part for an incomplete 3D shape. A widely used strategy is to generate a complete point cloud from the incomplete one. However, the unordered nature of po... 详细信息
来源: 评论
Delving into Localization Errors for Monocular 3D Object Detection
Delving into Localization Errors for Monocular 3D Object Det...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ma, Xinzhu Zhang, Yinmin Xu, Dan Zhou, Dongzhan Yi, Shuai Li, Haojie Ouyang, Wanli Univ Sydney Sydney NSW Australia Hong Kong Univ Sci & Technol Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China Dalian Univ Technol Dalian Peoples R China
Estimating 3D bounding boxes from monocular images is an essential component in autonomous driving, while accurate 3D object detection from this kind of data is very challenging. In this work, by intensive diagnosis e... 详细信息
来源: 评论
ClassSR: A General Framework to Accelerate Super-Resolution Networks by Data Characteristic
ClassSR: A General Framework to Accelerate Super-Resolution ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kong, Xiangtao Zhao, Hengyuan Qiao, Yu Dong, Chao Chinese Acad Sci Shenzhen Inst Adv Technol Key Lab Human Machine Intelligence Synergy Syst Shenzhen Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Shanghai AI Lab Shanghai Peoples R China Shenzhen Inst Artificial Intelligence & Robot Soc SIAT Branch Shenzhen Peoples R China
We aim at accelerating super-resolution (SR) networks on large images (2K-8K). The large images are usually decomposed into small sub-images in practical usages. Based on this processing, we found that different image... 详细信息
来源: 评论
Prototype Completion with Primitive Knowledge for Few-Shot Learning
Prototype Completion with Primitive Knowledge for Few-Shot L...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Baoquan Li, Xutao Ye, Yunming Huang, Zhichao Zhang, Lisai Harbin Inst Technol Shenzhen Peoples R China
Few-shot learning is a challenging task, which aims to learn a classifier for novel classes with few examples. Pretraining based meta-learning methods effectively tackle the problem by pre-training a feature extractor... 详细信息
来源: 评论