We propose SCVRL, a novel contrastive-based framework for self-supervised learning for videos. Differently from previous contrast learning based methods that mostly focus on learning visual semantics (e.g., CVRL), SCV...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
We propose SCVRL, a novel contrastive-based framework for self-supervised learning for videos. Differently from previous contrast learning based methods that mostly focus on learning visual semantics (e.g., CVRL), SCVRL is capable of learning both semantic and motion patterns. For that, we reformulate the popular shuffling pretext task within a modern contrastive learning paradigm. We show that our transformer-based network has a natural capacity to learn motion in self-supervised settings and achieves strong performance, outperforming CVRL on four benchmarks.
We propose a simple yet effective proposal-free architecture for lidar panoptic segmentation. We jointly optimize both semantic segmentation and class-agnostic instance classification in a single network using a pilla...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
We propose a simple yet effective proposal-free architecture for lidar panoptic segmentation. We jointly optimize both semantic segmentation and class-agnostic instance classification in a single network using a pilla-rbased bird's-eye view representation. The instance classification head learns pairwise affinity between pillars to determine whether the pillars belong to the same instance or not. We further propose a local clustering algorithm to propagate instance ids by merging semantic segmentation and affinity predictions. Our experiments on nuScenes dataset show that our approach outperforms previous proposal-free methods and is comparable to proposal-based methods which requires extra annotation from object detection.
This paper describes the third Affective Behavior Analysis in-the-wild (ABAW) Competition, held in conjunction with ieee International conference on computervision and patternrecognition (CVPR), 2022. The 3rd ABAW C...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
This paper describes the third Affective Behavior Analysis in-the-wild (ABAW) Competition, held in conjunction with ieee International conference on computervision and patternrecognition (CVPR), 2022. The 3rd ABAW Competition is a continuation of the Competitions held at ICCV 2021, ieee FG 2020 and ieee CVPR 2017 conferences, and aims at automatically analyzing affect. This year the Competition encompasses four Challenges: i) uni-task Valence-Arousal Estimation, ii) uni-task Expression Classification, iii) uni-task Action Unit Detection, and iv) MultiTask-Learning. All the Challenges are based on a common benchmark database, Aff-Wild2, which is a large scale in-the-wild database and the first one to be annotated in terms of valence-arousal, expressions and action units. In this paper, we present the four Challenges, with the utilized Competition corpora, we outline the evaluation metrics and present both the baseline systems and the top performing teams' per Challenge. Finally we illustrate the obtained results of the baseline systems and of all participating teams.
We study event-based sensors in the context of spacecraft guidance and control during a descent on Moon-like terrains. For this purpose, we develop a simulator reproducing the event-based camera outputs when exposed t...
详细信息
ISBN:
(纸本)9781665448994
We study event-based sensors in the context of spacecraft guidance and control during a descent on Moon-like terrains. For this purpose, we develop a simulator reproducing the event-based camera outputs when exposed to synthetic images of a space environment. We find that it is possible to reconstruct, in this context, the divergence of optical flow vectors (and therefore the time to contact) and use it in a simple control feedback scheme during simulated descents. The results obtained are very encouraging, albeit insufficient to meet the stringent safety constraints and modelling accuracy imposed upon space missions. We thus conclude by discussing future work aimed at addressing these limitations.
Previous research on localizing a target region in an image referred to by a natural language expression has occurred within an object-centric paradigm. However, in practice, there may not be any easily named or ident...
详细信息
ISBN:
(纸本)9781728193601
Previous research on localizing a target region in an image referred to by a natural language expression has occurred within an object-centric paradigm. However, in practice, there may not be any easily named or identifiable objects near a target location. Instead, references may need to rely on basic visual attributes, such as color or geometric clues. An expression like "a red something beside a blue vertical line" could still pinpoint a target location. As such, we begin to explore the open challenge of computational object-agnostic reference by constructing a novel dataset and by devising a new set of algorithms that can identify a target region in an image when given a referring expression containing only basic conceptual features.
Image deblurring and super-resolution (SR) are computervision tasks aiming to restore image detail and spatial scale, respectively. Besides, only a few recent works of literature contribute to this task, as conventio...
详细信息
ISBN:
(纸本)9781665448994
Image deblurring and super-resolution (SR) are computervision tasks aiming to restore image detail and spatial scale, respectively. Besides, only a few recent works of literature contribute to this task, as conventional methods deal with SR or deblurring separately. We focus on designing a novel Pixel-Guided dual-branch attention network (PDAN) that handles both tasks jointly to address this issue. Then, we propose a novel loss function better focus on large and medium range errors. Extensive experiments demonstrated that the proposed PDAN with the novel loss function not only generates remarkably clear HR images and achieves compelling results for joint image deblurring and SR tasks. In addition, our method achieves second place in NTIRE 2021 Challenge on track 1 of the Image Deblurring Challenge.
This paper describes a CNN where all CNN style 2D convolution operations that lower to matrix matrix multiplication are fully binary. The network is derived from a common building block structure that is consistent wi...
详细信息
ISBN:
(纸本)9781665448994
This paper describes a CNN where all CNN style 2D convolution operations that lower to matrix matrix multiplication are fully binary. The network is derived from a common building block structure that is consistent with a constructive proof outline showing that binary neural networks are universal function approximators. 71.24% top 1 accuracy on the 2012 ImageNet validation set was achieved with a 2 step training procedure and implementation strategies optimized for binary operands are provided.
In this paper we present an extensive evaluation of instance segmentation in the context of images containing clothes. We propose a multi level evaluation that completes the classical overlapping criteria given by IoU...
详细信息
ISBN:
(纸本)9781665448994
In this paper we present an extensive evaluation of instance segmentation in the context of images containing clothes. We propose a multi level evaluation that completes the classical overlapping criteria given by IoU. In particular, we quantify both the contour and color content accuracy of the the predicted segmentation masks. We demonstrate that the proposed evaluation framework is relevant to obtain meaningful insights on models performance through experiments conducted on five state of the art instance segmentation methods.
Learning a common representation space between vision and language allows deep networks to relate objects in the image to the corresponding semantic meaning. We present a model that learns a shared Gaussian mixture re...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
Learning a common representation space between vision and language allows deep networks to relate objects in the image to the corresponding semantic meaning. We present a model that learns a shared Gaussian mixture representation imposing the compositionality of the text onto the visual domain without having explicit location supervision. By combining the spatial transformer with a representation learning approach we learn to split images into separately encoded patches to associate visual and textual representations in an interpretable manner. On variations of MNIST and CIFAR10, our model is able to perform weakly supervised object detection and demonstrates its ability to extrapolate to unseen combination of objects.
Image anonymization is widely adapted in practice to comply with privacy regulations in many regions. However, anonymization often degrades the quality of the data, reducing its utility for computervision development...
详细信息
ISBN:
(纸本)9798350302493
Image anonymization is widely adapted in practice to comply with privacy regulations in many regions. However, anonymization often degrades the quality of the data, reducing its utility for computervision development. In this paper, we investigate the impact of image anonymization for training computervision models on key computervision tasks (detection, instance segmentation, and pose estimation). Specifically, we benchmark the recognition drop on common detection datasets, where we evaluate both traditional and realistic anonymization for faces and full bodies. Our comprehensive experiments reflect that traditional image anonymization substantially impacts final model performance, particularly when anonymizing the full body. Furthermore, we find that realistic anonymization can mitigate this decrease in performance, where our experiments reflect a minimal performance drop for face anonymization. Our study demonstrates that realistic anonymization can enable privacy-preserving computervision development with minimal performance degradation across a range of important computervision benchmarks.
暂无评论