咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是121-130 订阅
排序:
A Generative Approach for Wikipedia-Scale Visual Entity recognition
A Generative Approach for Wikipedia-Scale Visual Entity Reco...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Caron, Mathilde Iscen, Ahmet Fathi, Alireza Schmid, Cordelia Google Res San Francisco CA 94105 USA
In this paper, we address web-scale visual entity recognition, specifically the task of mapping a given query image to one of the 6 million existing entities in Wikipedia. One way of approaching a problem of such scal... 详细信息
来源: 评论
Learning unbiased classifiers from biased data with meta-learning
Learning unbiased classifiers from biased data with meta-lea...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ragonesi, Ruggero Morerio, Pietro Murino, Vittorio Ist Italiano Tecnol Pattern Anal & Comp Vis PAVIS Genoa Italy Univ Verona Dept Comp Sci Verona Italy
It is well known that large deep architectures are powerful models when adequately trained, but may exhibit undesirable behavior leading to confident incorrect predictions, even when evaluated on slightly different te... 详细信息
来源: 评论
Challenges in Video-Based Infant Action recognition: A Critical Examination of the State of the Art
Challenges in Video-Based Infant Action Recognition: A Criti...
收藏 引用
ieee/cvf Winter conference on Applications of computer vision (WACV)
作者: Hatamimajoumerd, Elaheh Kakhaki, Pooria Daneshvar Huang, Xiaofei Luan, Lingfei Amraee, Somaieh Ostadabbas, Sarah Northeastern Univ Dept Elect & Comp Engn Boston MA 02115 USA Northeastern Univ Roux Inst Portland ME USA Univ Minnesota Minneapolis MN USA
Automated human action recognition, a burgeoning field within computer vision, boasts diverse applications spanning surveillance, security, human-computer interaction, tele-health, and sports analysis. Precise action ... 详细信息
来源: 评论
Learning to Count without Annotations
Learning to Count without Annotations
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Knobel, Lukas Han, Tengda Asano, Yuki M. Univ Amsterdam Amsterdam Netherlands Univ Oxford Oxford England
While recent supervised methods for reference-based object counting continue to improve the performance on benchmark datasets, they have to rely on small datasets due to the cost associated with manually annotating do... 详细信息
来源: 评论
Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing
Probabilistic Sampling of Balanced K-Means using Adiabatic Q...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zaech, Jan-Nico Danelljan, Martin Birdal, Tolga Van Gool, Luc Swiss Fed Inst Technol Zurich Switzerland Univ Sofia INSAIT Sofia Bulgaria Imperial Coll London London England
Adiabatic quantum computing (AQC) is a promising approach for discrete and often NP-hard optimization problems. Current AQCs allow to implement problems of research interest, which has sparked the development of quant... 详细信息
来源: 评论
JoAPR: Cleaning the Lens of Prompt Learning for vision-Language Models
JoAPR: Cleaning the Lens of Prompt Learning for Vision-Langu...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Guo, Yuncheng Guo, Xiaodong Fudan Univ Dept Elect Engn Shanghai 200438 Peoples R China
Leveraging few-shot datasets in prompt learning for vision-Language Models eliminates the need for manual prompt engineering while highlighting the necessity of accurate annotations for the labels. However, high-level... 详细信息
来源: 评论
Florence-2: Advancing a Unified Representation for a Variety of vision Tasks
Florence-2: Advancing a Unified Representation for a Variety...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xiao, Bin Wu, Haiping Xu, Weijian Dai, Xiyang Hu, Houdong Lu, Yumao Zeng, Michael Liu, Ce Yuan, Lu Microsoft Corp Redmond WA 98052 USA
We introduce Florence-2, a novel vision foundation model with a unified, prompt-based representation for various computer vision and vision-language tasks. While ex-isting large vision models excel in transfer learnin... 详细信息
来源: 评论
One-Shot Open Affordance Learning with Foundation Models
One-Shot Open Affordance Learning with Foundation Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Gen Sun, Deqing Sevilla-Lara, Laura Jampani, Varun Univ Edinburgh Edinburgh Midlothian Scotland Google Res Mountain View CA USA Stabil AI London England
We introduce One-shot Open Affordance Learning (OOAL), where a model is trained with just one example per base object category, but is expected to identify novel objects and affordances. While vision-language models e... 详细信息
来源: 评论
Scene Graph Driven Text-Prompt Generation for Image Inpainting
Scene Graph Driven Text-Prompt Generation for Image Inpainti...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Shukla, Tripti Maheshwari, Paridhi Singh, Rajhans Shukla, Ankita Kulkarni, Kuldeep Turaga, Pavan Adobe Res India San Jose CA 95110 USA Stanford Univ Stanford CA USA Arizona State Univ Tempe AZ USA
Scene editing methods are undergoing a revolution, driven by text-to-image synthesis methods. Applications in media content generation have benefited from a careful set of engineered text prompts, that have been arriv... 详细信息
来源: 评论
Frozen Feature Augmentation for Few-Shot Image Classification
Frozen Feature Augmentation for Few-Shot Image Classificatio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bar, Andreas Houlsby, Neil Dehghani, Mostafa Kumar, Manoj Google DeepMind London England Tech Univ Carolo Wilhelmina Braunschweig Braunschweig Germany
Training a linear classifier or lightweight model on top of pretrained vision model outputs, so-called 'frozen features', leads to impressive performance on a number of downstream few-shot tasks. Currently, fr... 详细信息
来源: 评论