咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是211-220 订阅
排序:
Consistency and Uncertainty: Identifying Unreliable Responses From Black-Box vision-Language Models for Selective Visual Question Answering
Consistency and Uncertainty: Identifying Unreliable Response...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Khan, Zaid Fu, Yun Northeastern Univ Boston MA 02115 USA
The goal of selective prediction is to allow an a model to abstain when it may not be able to deliver a reliable prediction, which is important in safety-critical contexts. Existing approaches to selective prediction ... 详细信息
来源: 评论
Efficient Test-Time Adaptation of vision-Language Models
Efficient Test-Time Adaptation of Vision-Language Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Karmanov, Adilbek Guan, Dayan Lu, Shijian El Saddik, Abdulmotaleb Xing, Eric Mohamed bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates Nanyang Technol Univ Singapore Singapore Univ Ottawa Ottawa ON Canada Carnegie Mellon Univ Pittsburgh PA 15213 USA
Test-time adaptation with pre-trained vision-language models has attracted increasing attention for tackling distribution shifts during the test time. Though prior studies have achieved very promising performance, the...
来源: 评论
Active Open-Vocabulary recognition: Let Intelligent Moving Mitigate CLIP Limitations
Active Open-Vocabulary Recognition: Let Intelligent Moving M...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Fan, Lei Zhou, Jianxiong Xing, Xiaoying Wu, Ying Northwestern Univ Evanston IL 60208 USA
Active recognition, which allows intelligent agents to explore observations for better recognition performance, serves as a prerequisite for various embodied AI tasks, such as grasping, navigation and room arrangement... 详细信息
来源: 评论
Towards 3D vision with Low-Cost Single-Photon Cameras
Towards 3D Vision with Low-Cost Single-Photon Cameras
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mu, Fangzhou Sifferman, Carter Jungerman, Sacha Li, Yiquan Han, Mark Gleicher, Michael Gupta, Mohit Li, Yin Univ Wisconsin Madison WI 53706 USA
We present a method for reconstructing 3D shape of arbitrary Lambertian objects based on measurements by miniature, energy-efficient, low-cost single-photon cameras. These cameras, operating as time resolved image sen...
来源: 评论
GRAM: Global Reasoning for Multi-Page VQA
GRAM: Global Reasoning for Multi-Page VQA
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Blau, Tsachi Fogel, Sharon Ronen, Roi Goltst, Alona Per, Shahar Tsi Ben Avraham, Elad Aberdam, Aviad Ganz, Roy Litman, Ron Technion Haifa Israel AWS AI Labs Shanghai Peoples R China
The increasing use of transformer-based large language models brings forward the challenge of processing long sequences. In document visual question answering (DocVQA), leading methods focus on the single-page setting... 详细信息
来源: 评论
BIOCLIP: A vision Foundation Model for the Tree of Life
BIOCLIP: A Vision Foundation Model for the Tree of Life
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Stevens, Samuel Wu, Jiaman Thompson, Matthew J. Campolongo, Elizabeth G. Song, Chan Hee Carlyle, David Edward Dong, Li Dahdul, Wasila M. Stewart, Charles Berger-Wolf, Tanya Chao, Wei-Lun Su, Yu Ohio State Univ Columbus OH 43210 USA Microsoft Res Mountain View CA USA Univ Calif Irvine Irvine CA USA Rensselaer Polytech Inst Troy NY USA
Images of the natural world, collected by a variety of cameras, from drones to individual phones, are increasingly abundant sources of biological information. There is an explosion of computational methods and tools, ... 详细信息
来源: 评论
Projecting Trackable Thermal patterns for Dynamic computer vision
Projecting Trackable Thermal Patterns for Dynamic Computer V...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sheinin, Mark Sankaranarayanan, Aswin C. Narasimhan, Srinivasa G. Carnegie Mellon Univ Pittsburgh PA 15213 USA
Adding artificial patterns to objects, like QR codes, can ease tasks such as object tracking, robot navigation, and conveying information (e.g., a label or a website link). However, these patterns require a physical a... 详细信息
来源: 评论
ICON: Incremental CONfidence for Joint Pose and Radiance Field Optimization
ICON: Incremental CONfidence for Joint Pose and Radiance Fie...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Weiyao Gleize, Pierre Tang, Hao Chen, Xingyu Liang, Kevin J. Feiszli, Matt Meta FAIR Menlo Pk CA 94025 USA
Neural Radiance Fields (NeRF) exhibit remarkable performance for Novel View Synthesis (NVS) given a set of 2D images. However, NeRF training requires accurate camera pose for each input view, typically obtained by Str... 详细信息
来源: 评论
VicTR: Video-conditioned Text Representations for Activity recognition
VicTR: Video-conditioned Text Representations for Activity R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kahatapitiya, Kumara Arnab, Anurag Nagrani, Arsha Ryoo, Michael S. SUNY Stony Brook Stony Brook NY 11794 USA Google Res Mountain View CA USA
vision-Language models (VLMs) have excelled in the image-domain- especially in zero-shot settings- thanks to the availability of vast pretraining data (i.e., paired image-text samples). However for videos, such paired... 详细信息
来源: 评论
Sequential Modeling Enables Scalable Learning for Large vision Models
Sequential Modeling Enables Scalable Learning for Large Visi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bail, Yutong Geng, Xinyang Mangalam, Karttikeya Bar, Amir Yuille, Alan L. Darrell, Trevor Malik, Jitendra Efros, Alexei A. UC Berkeley BAIR Berkeley CA 94720 USA Johns Hopkins Univ Baltimore MD 21218 USA
We introduce a novel sequential modeling approach which enables learning a Large vision Model (LVM) without making use of any linguistic data. To do this, we define a common format, "visual sentences", in wh... 详细信息
来源: 评论