咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,693 篇 training
  • 2,440 篇 pattern recognit...
  • 1,778 篇 computational mo...
  • 1,528 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,061 篇 semantics
  • 997 篇 benchmark testin...
  • 980 篇 codes
  • 970 篇 conferences
  • 852 篇 feature extracti...
  • 828 篇 cameras
  • 771 篇 task analysis
  • 708 篇 deep learning
  • 645 篇 image segmentati...
  • 611 篇 object detection
  • 584 篇 shape
  • 554 篇 transformers
  • 543 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 118 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 83 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 78 篇 peng cheng labor...
  • 77 篇 shanghai ai lab ...
  • 75 篇 university of sc...
  • 72 篇 peng cheng lab p...
  • 69 篇 shanghai jiao to...
  • 69 篇 shanghai jiao to...
  • 69 篇 sensetime res pe...
  • 68 篇 stanford univ st...
  • 67 篇 alibaba grp peop...
  • 67 篇 univ hong kong p...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 39 篇 luc van gool
  • 36 篇 yang yi
  • 33 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 29 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 24 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 22 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,850 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是221-230 订阅
排序:
Towards 3D vision with Low-Cost Single-Photon Cameras
Towards 3D Vision with Low-Cost Single-Photon Cameras
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mu, Fangzhou Sifferman, Carter Jungerman, Sacha Li, Yiquan Han, Mark Gleicher, Michael Gupta, Mohit Li, Yin Univ Wisconsin Madison WI 53706 USA
We present a method for reconstructing 3D shape of arbitrary Lambertian objects based on measurements by miniature, energy-efficient, low-cost single-photon cameras. These cameras, operating as time resolved image sen...
来源: 评论
Sequential Modeling Enables Scalable Learning for Large vision Models
Sequential Modeling Enables Scalable Learning for Large Visi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bail, Yutong Geng, Xinyang Mangalam, Karttikeya Bar, Amir Yuille, Alan L. Darrell, Trevor Malik, Jitendra Efros, Alexei A. UC Berkeley BAIR Berkeley CA 94720 USA Johns Hopkins Univ Baltimore MD 21218 USA
We introduce a novel sequential modeling approach which enables learning a Large vision Model (LVM) without making use of any linguistic data. To do this, we define a common format, "visual sentences", in wh... 详细信息
来源: 评论
Context-based and Diversity-driven Specificity in Compositional Zero-Shot Learning
Context-based and Diversity-driven Specificity in Compositio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Yun Liu, Zhe Chen, Hang Yao, Lina CSIROs Data61 Clayton Vic Australia Bytedance Ltd Beijing Peoples R China Snap Inc Santa Monica CA USA
Compositional Zero-Shot Learning (CZSL) aims to recognize unseen attribute-object pairs based on a limited set of observed examples. Current CZSL methodologies, despite their advancements, tend to neglect the distinct... 详细信息
来源: 评论
Efficient Test-Time Adaptation of vision-Language Models
Efficient Test-Time Adaptation of Vision-Language Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Karmanov, Adilbek Guan, Dayan Lu, Shijian El Saddik, Abdulmotaleb Xing, Eric Mohamed bin Zayed Univ Artificial Intelligence Abu Dhabi U Arab Emirates Nanyang Technol Univ Singapore Singapore Univ Ottawa Ottawa ON Canada Carnegie Mellon Univ Pittsburgh PA 15213 USA
Test-time adaptation with pre-trained vision-language models has attracted increasing attention for tackling distribution shifts during the test time. Though prior studies have achieved very promising performance, the...
来源: 评论
Learning to Predict Activity Progress by Self-Supervised Video Alignment
Learning to Predict Activity Progress by Self-Supervised Vid...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Donahue, Gerard Elhamifar, Ehsan Northwestern Univ Boston MA 02115 USA
In this paper, we tackle the problem of self-supervised video alignment and activity progress prediction using in-the-wild videos. Our proposed self-supervised representation learning method carefully addresses differ... 详细信息
来源: 评论
ICON: Incremental CONfidence for Joint Pose and Radiance Field Optimization
ICON: Incremental CONfidence for Joint Pose and Radiance Fie...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Weiyao Gleize, Pierre Tang, Hao Chen, Xingyu Liang, Kevin J. Feiszli, Matt Meta FAIR Menlo Pk CA 94025 USA
Neural Radiance Fields (NeRF) exhibit remarkable performance for Novel View Synthesis (NVS) given a set of 2D images. However, NeRF training requires accurate camera pose for each input view, typically obtained by Str... 详细信息
来源: 评论
Transductive Zero-Shot and Few-Shot CLIP
Transductive Zero-Shot and Few-Shot CLIP
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Martin, Segolene Huang, Yunshi Shakeri, Fereshteh Pesquet, Jean-Christophe Ben Ayed, Ismail Univ Paris Saclay CVN Cent Supelec INRIA Paris France ETS Montreal Montreal PQ Canada
Transductive inference has been widely investigated in few-shot image classification, but completely overlooked in the recent, fast growing literature on adapting vision-langage models like CLIP. This paper addresses ... 详细信息
来源: 评论
VicTR: Video-conditioned Text Representations for Activity recognition
VicTR: Video-conditioned Text Representations for Activity R...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kahatapitiya, Kumara Arnab, Anurag Nagrani, Arsha Ryoo, Michael S. SUNY Stony Brook Stony Brook NY 11794 USA Google Res Mountain View CA USA
vision-Language models (VLMs) have excelled in the image-domain- especially in zero-shot settings- thanks to the availability of vast pretraining data (i.e., paired image-text samples). However for videos, such paired... 详细信息
来源: 评论
Projecting Trackable Thermal patterns for Dynamic computer vision
Projecting Trackable Thermal Patterns for Dynamic Computer V...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sheinin, Mark Sankaranarayanan, Aswin C. Narasimhan, Srinivasa G. Carnegie Mellon Univ Pittsburgh PA 15213 USA
Adding artificial patterns to objects, like QR codes, can ease tasks such as object tracking, robot navigation, and conveying information (e.g., a label or a website link). However, these patterns require a physical a... 详细信息
来源: 评论
H-ViT: A Hierarchical vision Transformer for Deformable Image Registration
H-ViT: A Hierarchical Vision Transformer for Deformable Imag...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ghahremani, Morteza Khateri, Mohammad Jian, Bailiang Wiestler, Benedikt Adeli, Ehsan Wachinger, Christian Tech Univ Munich Munich Germany Munich Ctr Machine Learning Munich Germany Univ Eastern Finland Espoo Finland Stanford Univ Stanford CA 94305 USA
This paper introduces a novel top-down representation approach for deformable image registration, which estimates the deformation field by capturing various short-and long-range flow features at different scale levels... 详细信息
来源: 评论