咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是301-310 订阅
排序:
Disentangled Loss for Low-Bit Quantization-Aware Training
Disentangled Loss for Low-Bit Quantization-Aware Training
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Allenet, Thibault Briand, David Bichler, Olivier Sentieys, Olivier CEA LIST Saclay France Univ Rennes INRIA Rennes France
Quantization-Aware Training (QAT) has recently showed a lot of potential for low-bit settings in the context of image classification. Approaches based on QAT are using the Cross Entropy Loss function which is the refe... 详细信息
来源: 评论
Single View Geocentric Pose in the Wild
Single View Geocentric Pose in the Wild
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Christie, Gordon Foster, Kevin Hagstrom, Shea Hager, Gregory D. Brown, Myron Z. Johns Hopkins Univ Appl Phys Lab Baltimore MD 21218 USA Johns Hopkins Univ Dept Comp Sci Baltimore MD 21218 USA
Current methods for Earth observation tasks such as semantic mapping, map alignment, and change detection rely on near-nadir images;however, often the first available images in response to dynamic world events such as... 详细信息
来源: 评论
Multi-Camera Vehicle Tracking System for AI City Challenge 2022
Multi-Camera Vehicle Tracking System for AI City Challenge 2...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Fei Wang, Zhen Nie, Ding Zhang, Shiyi Jiang, Xingqun Zhao, Xingxing Hu, Peng BOE Technol Grp Beijing Peoples R China
Multi-Target Multi-Camera tracking is a fundamental task for intelligent traffic systems. The track 1 of AI City Challenge 2022 aims at the city-scale multi-camera vehicle tracking task. In this paper we propose an ac... 详细信息
来源: 评论
Localized Triplet Loss for Fine-grained Fashion Image Retrieval
Localized Triplet Loss for Fine-grained Fashion Image Retrie...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: D'Innocente, Antonio Garg, Nikhil Zhang, Yuan Bazzani, Loris Donoser, Michael Sapienza Univ Rome Rome Italy Amazon Munich Germany Amazon Seattle WA USA
Fashion retrieval methods aim at learning a clothing-specific embedding space where images are ranked based on their global visual similarity with a given query. However, global embeddings struggle to capture localize... 详细信息
来源: 评论
InfoScrub: Towards Attribute Privacy by Targeted Obfuscation
InfoScrub: Towards Attribute Privacy by Targeted Obfuscation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Hui-Po Orekondy, Tribhuvanesh Fritz, Mario CISPA Helmholtz Ctr Informat Secur Saarbrucken Germany Max Planck Inst Informat Saarland Informat Campus Saarbrucken Germany
Personal photos of individuals when shared online, apart from exhibiting a myriad of memorable details, also reveals a wide range of private information and potentially entails privacy risks (e.g., online harassment, ... 详细信息
来源: 评论
SymDNN: Simple & Effective Adversarial Robustness for Embedded Systems
SymDNN: Simple & Effective Adversarial Robustness for Embedd...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dey, Swarnava Dasgupta, Pallab Chakrabarti, Partha P. Indian Inst Technol Kharagpur Kharagpur 721302 W Bengal India
We propose SymDNN, a Deep Neural Network (DNN) inference scheme, to segment an input image into small patches, replace those patches with representative symbols, and use the reconstructed image for CNN inference. This... 详细信息
来源: 评论
Self-Supervised Learning of Pose-Informed Latents
Self-Supervised Learning of Pose-Informed Latents
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jean, Raphael St-Charles, Pierre-Luc Pirk, Soren Brodeur, Simon Menya Solut Sherbrooke PQ Canada Mila Montreal PQ Canada AMLRT Montreal PQ Canada Google Res Mountain View CA USA
Siamese network architectures trained for self-supervised instance recognition can learn powerful visual representations that are useful in various tasks. Many such approaches maximize the similarity between represent... 详细信息
来源: 评论
GAN-based vision Transformer for High-Quality Thermal Image Enhancement
GAN-based Vision Transformer for High-Quality Thermal Image ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Marnissi, Mohamed Amine Fathallah, Abir Univ Sfax Ecole Natl Ingn Sfax Sfax 3038 Tunisia Inst Polytech Paris Samovar CNRS Telecom SudParis 9 Rue Charles Fourier F-91011 Evry France
Generative Adversarial Networks (GANs) have shown an outstanding ability to generate high-quality images with visual realism and similarity to real images. This paper presents a new architecture for thermal image enha... 详细信息
来源: 评论
When NAS Meets Trees: An Efficient Algorithm for Neural Architecture Search
When NAS Meets Trees: An Efficient Algorithm for Neural Arch...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Qian, Guocheng Zhang, Xuanyang Li, Guohao Zhao, Chen Chen, Yukang Zhang, Xiangyu Ghanem, Bernard Sun, Jian King Abdullah Univ Sci & Technol KAUST Thuwal Saudi Arabia MEGVII Technol Beijing Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
The key challenge in neural architecture search (NAS) is designing how to explore wisely in the huge search space. We propose a new NAS method called TNAS (NAS with trees), which improves search efficiency by explorin... 详细信息
来源: 评论
Boosting Adversarial Robustness using Feature Level Stochastic Smoothing
Boosting Adversarial Robustness using Feature Level Stochast...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Addepalli, Sravanti Jain, Samyak Sriramanan, Gaurang Babu, R. Venkatesh Indian Inst Sci Video Analyt Lab Dept Computat & Data Sci Bangalore Karnataka India
Advances in adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks. However, the robust accuracy of present state-of-the-art defenses is far from the requirements in criti... 详细信息
来源: 评论