咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是321-330 订阅
排序:
Edit One for All: Interactive Batch Image Editing
Edit One for All: Interactive Batch Image Editing
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Thao Nguyen Ojha, Utkarsh Li, Yuheng Liu, Haotian Lee, Yong Jae Univ Wisconsin Madison Madison WI 53707 USA
In recent years, image editing has advanced remarkably. With increased human control, it is now possible to edit an image in a plethora of ways;from specifying in text what we want to change, to straight up dragging t... 详细信息
来源: 评论
Domain Prompt Learning with Quaternion Networks
Domain Prompt Learning with Quaternion Networks
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Cao, Qinglong Xu, Zhengqin Chen, Yuntian Ma, Chao Yang, Xiaokang Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai Peoples R China Eastern Inst Technol Ningbo Inst Digital Twin Ningbo Peoples R China
Prompt learning has emerged as a potent and resource-efficient technique in large vision-Language Models (VLMs). However, its application in adapting VLMs to specialized domains like remote sensing and medical imaging... 详细信息
来源: 评论
Boosting Adversarial Transferability by Block Shuffle and Rotation
Boosting Adversarial Transferability by Block Shuffle and Ro...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Kunyu He, Xuanran Wang, Wenxuan Wang, Xiaosen Chinese Univ Hong Kong Hong Kong Peoples R China Nanyang Technol Univ Singapore Singapore Huawei Singular Secur Lab Beijing Peoples R China
Adversarial examples mislead deep neural networks with imperceptible perturbations and have brought significant threats to deep learning. An important aspect is their transferability, which refers to their ability to ... 详细信息
来源: 评论
PoNQ: a Neural QEM-based Mesh Representation
PoNQ: a Neural QEM-based Mesh Representation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Maruani, Nissim Ovsjanikov, Maks Alliez, Pierre Desbrun, Mathieu Univ Cote Azur INRIA Nice France IP Paris Ecole Polytech LIX Paris France Ecole Polytech Inria Saclay Paris France
Although polygon meshes have been a standard representation in geometry processing, their irregular and combinatorial nature hinders their suitability for learning-based applications. In this work, we introduce a nove... 详细信息
来源: 评论
ViT-CoMer: vision Transformer with Convolutional Multi-scale Feature Interaction for Dense Predictions
ViT-CoMer: Vision Transformer with Convolutional Multi-scale...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xia, Chunlong Wang, Xinliang Lv, Feng Hao, Xin Shi, Yifeng Baidu Inc Beijing Peoples R China
Although vision Transformer (ViT) has achieved significant success in computer vision, it does not perform well in dense prediction tasks due to the lack of inner-patch information interaction and the limited diversit... 详细信息
来源: 评论
Multi-Modal Hallucination Control by Visual Information Grounding
Multi-Modal Hallucination Control by Visual Information Grou...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Favero, Alessandro Zancato, Luca Trager, Matthew Choudhary, Siddharth Perera, Pramuditha Achille, Alessandro Swaminathan, Ashwin Soatto, Stefano AWS AI Labs Lausanne Switzerland
Generative vision-Language Models (VLMs) are prone to generate plausible-sounding textual answers that, however, are not always grounded in the input image. We investigate this phenomenon, usually referred to as "... 详细信息
来源: 评论
Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning
Troika: Multi-Path Cross-Modal Traction for Compositional Ze...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hu, Siteng Gong, Biao Feng, Yutong Zhang, Min Lv, Yiliang Wang, Donglin Zhejiang Univ Hangzhou Peoples R China Alibaba Grp Hangzhou Peoples R China Westlake Univ Sch Engn AI Div Machine Intelligence Lab MiLAB Hangzhou Peoples R China
Recent compositional zero-shot learning (CZSL) methods adapt pre-trained vision-language models (VLMs) by constructing trainable prompts only for composed state-object pairs. Relying on learning the joint representati... 详细信息
来源: 评论
Boosting Object Detection with Zero-Shot Day-Night Domain Adaptation
Boosting Object Detection with Zero-Shot Day-Night Domain Ad...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Du, Zhipeng Shi, Miaojing Deng, Jiankang Kings Coll London Dept Informat London England Tongji Univ Coll Elect & Informat Engn Shanghai Peoples R China Imperial Coll London Dept Comp London England Huawei London Res London England
Detecting objects in low-light scenarios presents a persistent challenge, as detectors trained on well-lit data exhibit significant performance degradation on low-light data due to low visibility. Previous methods mit... 详细信息
来源: 评论
GenZI: Zero-Shot 3D Human-Scene Interaction Generation
GenZI: Zero-Shot 3D Human-Scene Interaction Generation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Lei Dai, Angela Tech Univ Munich Munich Germany
Can we synthesize 3D humans interacting with scenes without learning from any 3D human-scene interaction data? We propose GenZI(1), the first zero-shot approach to generating 3D human-scene interactions. Key to GenZI ... 详细信息
来源: 评论
RMT: Retentive Networks Meet vision Transformers
RMT: Retentive Networks Meet Vision Transformers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Fan, Qihang Huang, Huaibo Chen, Mingrui Liu, Hongmin He, Ran Chinese Acad Sci Inst Automat MAIS & CRIPAC Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China Univ Sci & Technol Beijing Beijing Peoples R China
vision Transformer (ViT) has gained increasing attention in the computer vision community in recent years. However, the core component of ViT, Self-Attention, lacks explicit spatial priors and bears a quadratic comput... 详细信息
来源: 评论