咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4431-4440 订阅
排序:
LFNAT 2023 Challenge on Light Field Depth Estimation: Methods and Results
LFNAT 2023 Challenge on Light Field Depth Estimation: Method...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Hao Sheng Yebin Liu Jingyi Yu Gaochang Wu Wei Xiong Ruixuan Cong Rongshan Chen Longzhao Guo Yanlin Xie Shuo Zhang Song Chang Youfang Lin Wentao Chao Xuechun Wang Guanghui Wang Fuqing Duan Tun Wang Da Yang Zhenglong Cui Sizhe Wang Mingyuan Zhao Qiong Wang Qianyu Chen Zhengyu Liang Yingqian Wang Jungang Yang Xueting Yang Junli Deng LFNAT 2023 Challenge State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and Engineering Beihang University and Beihang Hangzhou Innovation Institute Yuhang
This paper reviews the 1st LFNAT challenge on light field depth estimation, which aims at predicting disparity information of central view image in a light field (i.e., pixel offset between central view image and adja...
来源: 评论
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation
StyleSpace Analysis: Disentangled Controls for StyleGAN Imag...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, Zongze Lischinski, Dani Shechtman, Eli Hebrew Univ Jerusalem Jerusalem Israel Adobe Res San Jose CA USA
We explore and analyze the latent style space of StyleGAN2, a state-of-the-art architecture for image generation, using models pretrained on several different datasets. We first show that StyleSpace, the space of chan... 详细信息
来源: 评论
Shot Contrastive Self-Supervised Learning for Scene Boundary Detection
Shot Contrastive Self-Supervised Learning for Scene Boundary...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Shixing Nie, Xiaohan Fan, David Zhang, Dongqing Bhat, Vimal Hamid, Raffay Amazon Prime Video Seattle WA 98109 USA
Scenes play a crucial role in breaking the storyline of movies and TV episodes into semantically cohesive parts. However, given their complex temporal structure, finding scene boundaries can be a challenging task requ... 详细信息
来源: 评论
A Realistic Evaluation of Semi-Supervised Learning for Fine-Grained Classification
A Realistic Evaluation of Semi-Supervised Learning for Fine-...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Su, Jong-Chyi Cheng, Zezhou Maji, Subhransu Univ Massachusetts Amherst Amherst MA 01003 USA
We evaluate the effectiveness of semi-supervised learning (SSL) on a realistic benchmark where data exhibits considerable class imbalance and contains images from novel classes. Our benchmark consists of two fine-grai... 详细信息
来源: 评论
PointPrompt: A Multi-modal Prompting Dataset for Segment Anything Model
PointPrompt: A Multi-modal Prompting Dataset for Segment Any...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Jorge Quesada Mohammad Alotaibi Mohit Prabhushankar Ghassan AlRegib OLIVES Lab Georgia Institute of Technology Atlanta GA USA
The capabilities of foundation models, most recently the Segment Anything Model, have gathered a large degree of attention for providing a versatile framework for tackling a wide array of image segmentation tasks. How... 详细信息
来源: 评论
Hierarchical Motion Understanding via Motion Programs
Hierarchical Motion Understanding via Motion Programs
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kulal, Sumith Mao, Jiayuan Aiken, Alex Wu, Jiajun Stanford Univ Stanford CA 94305 USA MIT Cambridge MA 02139 USA
Current approaches to video analysis of human motion focus on raw pixels or keypoints as the basic units of reasoning. We posit that adding higher-level motion primitives, which can capture natural coarser units of mo... 详细信息
来源: 评论
SSAN: Separable Self-Attention Network for Video Representation Learning
SSAN: Separable Self-Attention Network for Video Representat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Guo, Xudong Guo, Xun Lu, Yan Tsinghua Univ Beijing Peoples R China Microsoft Res Asia Beijing Peoples R China MSRA Beijing Peoples R China
Self-attention has been successfully applied to video representation learning due to the effectiveness of modeling long range dependencies. Existing approaches build the dependencies merely by computing the pairwise c... 详细信息
来源: 评论
General Multi-label Image Classification with Transformers
General Multi-label Image Classification with Transformers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lanchantin, Jack Wang, Tianlu Ordonez, Vicente Qi, Yanjun Univ Virginia Charlottesville VA 22903 USA
Multi-label image classification is the task of predicting a set of labels corresponding to objects, attributes or other entities present in an image. In this work we propose the Classification Transformer (C-Tran), a... 详细信息
来源: 评论
Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning
Self-Promoted Prototype Refinement for Few-Shot Class-Increm...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhu, Kai Cao, Yang Zhai, Wei Cheng, Jie Zha, Zheng-Jun Univ Sci & Technol China Hefei Peoples R China Huawei Technol Co Ltd Shenzhen Peoples R China
Few-shot class-incremental learning is to recognize the new classes given few samples and not forget the old classes. It is a challenging task since representation optimization and prototype reorganization can only be... 详细信息
来源: 评论
Complementary Relation Contrastive Distillation
Complementary Relation Contrastive Distillation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhu, Jinguo Tang, Shixiang Chen, Dapeng Yu, Shijie Liu, Yakun Rong, Mingzhe Yang, Aijun Wang, Xiaohua Xi An Jiao Tong Univ Xian Peoples R China Univ Sydney Sydney NSW Australia Sensetime Grp Ltd Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Peoples R China
Knowledge distillation aims to transfer representation ability from a teacher model to a student model. Previous approaches focus on either individual representation distillation or inter-sample similarity preservatio... 详细信息
来源: 评论