咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4441-4450 订阅
排序:
CondenseNet V2: Sparse Feature Reactivation for Deep Networks
CondenseNet V2: Sparse Feature Reactivation for Deep Network...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yang, Le Jiang, Haojun Cai, Ruojin Wang, Yulin Song, Shiji Huang, Gao Tian, Qi Tsinghua Univ Dept Automat Beijing Natl Res Ctr Informat Sci & Technol BNRis Beijing Peoples R China Cornell Univ Ithaca NY 14853 USA Huawei Cloud & AI Ithaca NY USA
Reusing features in deep networks through dense connectivity is an effective way to achieve high computational efficiency. The recent proposed CondenseNet [14] has shown that this mechanism can befiirther improved if ... 详细信息
来源: 评论
Protecting Intellectual Property of Generative Adversarial Networks from Ambiguity Attacks
Protecting Intellectual Property of Generative Adversarial N...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ong, Ding Sheng Chan, Chee Seng Ng, Kam Woh Fan, Lixin Yang, Qiang Univ Malaya Kuala Lumpur Malaysia WeBank AI Lab Kuala Lumpur Malaysia Hong Kong Univ Sci & Technol Hong Kong Peoples R China
Ever since Machine Learning as a Service emerges as a viable business that utilizes deep learning models to generate lucrative revenue, Intellectual Property Right (IPR) has become a major concern because these deep l... 详细信息
来源: 评论
Bilevel Online Adaptation for Out-of-Domain Human Mesh Reconstruction
Bilevel Online Adaptation for Out-of-Domain Human Mesh Recon...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Guan, Shanyan Xu, Jingwei Wang, Yunbo Ni, Bingbing Yang, Xiaokang Shanghai Jiao Tong Univ Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai Peoples R China
This paper considers a new problem of adapting a pretrained model of human mesh reconstruction to out-of-domain streaming videos. However, most previous methods based on the parametric SMPL model [36] underperform in ... 详细信息
来源: 评论
PointNetLK Revisited
PointNetLK Revisited
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Xueqian Pontes, Jhony Kaesemodel Lucey, Simon Argo AI Pittsburgh PA 15222 USA Univ Adelaide Adelaide SA Australia Carnegie Mellon Univ Pittsburgh PA 15213 USA
We address the generalization ability of recent learning-based point cloud registration methods. Despite their success, these approaches tend to have poor performance when applied to mismatched conditions that are not... 详细信息
来源: 评论
Latent Flow Diffusion for Deepfake Video Generation
Latent Flow Diffusion for Deepfake Video Generation
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Aashish Chandra K Aashutosh A V Srijan Das Abhijit Das Birla Institute of Technology & Science Pilani India University of North Carolina Charlotte USA
Image-to-video generation with conditional identity swap popularly known as deepfake, aims to synthesize a new video for the target identity guided by an image of the target and a video of the source identity. The big... 详细信息
来源: 评论
Drop the GAN: In Defense of Patches Nearest Neighbors as Single Image Generative Models
Drop the GAN: In Defense of Patches Nearest Neighbors as Sin...
收藏 引用
2022 ieee/cvf conference on computer vision and pattern recognition, CVPR 2022
作者: Granot, Niv Feinstein, Ben Shocher, Assaf Bagon, Shai Irani, Michal The Weizmann Institute of Science Dept. of Computer Science and Applied Math Israel Israel
Image manipulation dates back long before the deep learning era. The classical prevailing approaches were based on maximizing patch similarity between the input and generated output. Recently, single-image GANs were i... 详细信息
来源: 评论
3D Human Pose Estimation with Occlusions: Introducing BlendMimic3D Dataset and GCN Refinement
3D Human Pose Estimation with Occlusions: Introducing BlendM...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Filipa Lino Carlos Santiago Manuel Marques LARSyS Instituto Superior Técnico Institute for Systems and Robotics Portugal
In the field of 3D Human Pose Estimation (HPE), accurately estimating human pose, especially in scenarios with occlusions, is a significant challenge. This work identifies and addresses a gap in the current state of t... 详细信息
来源: 评论
Unknown Sample Discovery for Source Free Open Set Domain Adaptation
Unknown Sample Discovery for Source Free Open Set Domain Ada...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Chowdhury Sadman Jahan Andreas Savakis Center for Imaging Science Rochester Institute of Technology Rochester NY USA Department of Computer Engineering Rochester Institute of Technology Rochester NY USA
Open Set Domain Adaptation (OSDA) aims to adapt a model trained on a source domain to a target domain that undergoes distribution shift and contains samples from novel classes outside the source domain. Test-time or s... 详细信息
来源: 评论
Seeing Through the Data: A Statistical Evaluation of Prohibited Item Detection Benchmark Datasets for X-ray Security Screening
Seeing Through the Data: A Statistical Evaluation of Prohibi...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Brian K. S. Isaac-Medina Seyma Yucer Neelanjan Bhowmik Toby P. Breckon Department of Computer Science Durham University UK Department of Engineering Durham University UK
The rapid progress in automatic prohibited object detection within the context of X-ray security screening, driven forward by advances in deep learning, has resulted in the first internationally-recognized, applicatio...
来源: 评论
Learning Multi-Scale Photo Exposure Correction
Learning Multi-Scale Photo Exposure Correction
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Afifi, Mahmoud Derpanis, Konstantinos G. Ommer, Bjoern Brown, Michael S. Samsung AI Ctr SAIC Toronto ON Canada York Univ N York ON Canada Heidelberg Univ Heidelberg Germany
Capturing photographs with wrong exposures remains a major source of errors in camera-based imaging. Exposure problems are categorized as either: (i) overexposed, where the camera exposure was too long, resulting in b... 详细信息
来源: 评论