咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4461-4470 订阅
排序:
UnsupervisedR&R: Unsupervised Point Cloud Registration via Differentiable Rendering
UnsupervisedR&R: Unsupervised Point Cloud Registration via D...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: El Banani, Mohamed Gao, Luya Johnson, Justin Univ Michigan Ann Arbor MI 48109 USA
Aligning partial views of a scene into a single whole is essential to understanding one's environment and is a key component of numerous robotics tasks such as SLAM and SfM. Recent approaches have proposed end-to-... 详细信息
来源: 评论
Weakly-supervised Instance Segmentation via Class-agnostic Learning with Salient Images
Weakly-supervised Instance Segmentation via Class-agnostic L...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Xinggang Feng, Jiapei Hu, Bin Ding, Qi Ran, Longjin Chen, Xiaoxin Liu, Wenyu Huazhong Univ Sci & Technol Wuhan Peoples R China VIVO Inc Pleasanton CA USA
Humans have a strong class-agnostic object segmentation ability and can outline boundaries of unknown objects precisely, which motivates us to propose a box-supervised class-agnostic object segmentation (BoxCaseg) bas... 详细信息
来源: 评论
On Focal Loss for Class-Posterior Probability Estimation: A Theoretical Perspective
On Focal Loss for Class-Posterior Probability Estimation: A ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Charoenphakdee, Nontawat Vongkulbhisal, Jayakorn Chairatanakul, Nuttapong Sugiyama, Masashi Univ Tokyo Tokyo Japan RIKEN AIP Tokyo Japan IBM Res Yorktown Hts NY USA Tokyo Inst Technol Tokyo Japan AIST RWBC OIL Tokyo Japan
The focal loss has demonstrated its effectiveness in many real-world applications such as object detection and image classification, but its theoretical understanding has been limited so far. In this paper, we first p... 详细信息
来源: 评论
Temporally-Weighted Hierarchical Clustering for Unsupervised Action Segmentation
Temporally-Weighted Hierarchical Clustering for Unsupervised...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sarfraz, M. Saquib Murray, Naila Sharma, Vivek Diba, Ali van Gool, Luc Stiefelhagen, Rainer Karlsruhe Inst Technol Karlsruhe Germany Facebook AI Res Menlo Pk CA USA MIT Cambridge MA 02139 USA Harvard Med Sch Boston MA 02115 USA Katholieke Univ Leuven Leuven Belgium Swiss Fed Inst Technol Zurich Switzerland Daimler TSS Ulm Germany
Action segmentation refers to inferring boundaries of semantically consistent visual concepts in videos and is an important requirement for many video understanding tasks. For this and other video understanding tasks,... 详细信息
来源: 评论
Understanding Object Dynamics for Interactive Image-to-Video Synthesis
Understanding Object Dynamics for Interactive Image-to-Video...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Blattmann, Andreas Milbich, Timo Dorkenwald, Michael Ommer, Bjoern Heidelberg Univ Interdisciplinary Ctr Sci Comp HCI Heidelberg Germany
What would be the effect of locally poking a static scene? We present an approach that learns naturally-looking global articulations caused by a local manipulation at a pixel level. Training requires only videos of mo... 详细信息
来源: 评论
Visualizing Adapted Knowledge in Domain Transfer
Visualizing Adapted Knowledge in Domain Transfer
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hou, Yunzhong Zheng, Liang Australian Natl Univ Canberra ACT Australia
A source model trained on source data and a target model learned through unsupervised domain adaptation (UDA) usually encode different knowledge. To understand the adaptation process, we portray their knowledge differ... 详细信息
来源: 评论
Correlated Input-Dependent Label Noise in Large-Scale Image Classification
Correlated Input-Dependent Label Noise in Large-Scale Image ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Collier, Mark Mustafa, Basil Kokiopoulou, Efi Jenatton, Rodolphe Berent, Jesse Google AI Mountain View CA 94043 USA
Large scale image classification datasets often contain noisy labels. We take a principled probabilistic approach to modelling input-dependent, also known as heteroscedastic, label noise in these datasets. We place a ... 详细信息
来源: 评论
Joint Generative and Contrastive Learning for Unsupervised Person Re-identification
Joint Generative and Contrastive Learning for Unsupervised P...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Hao Wang, Yaohui Lagadec, Benoit Dantcheva, Antitza Bremond, Francois INRIA Le Chesnay France Univ Cote Azur Nice France European Syst Integrat Le Cannet France
Recent self-supervised contrastive learning provides an effective approach for unsupervised person re-identification (ReID) by learning invariance from different views (transformed versions) of an input. In this paper... 详细信息
来源: 评论
How to Benchmark vision Foundation Models for Semantic Segmentation?
How to Benchmark Vision Foundation Models for Semantic Segme...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Tommie Kerssies Daan De Geus Gijs Dubbelman Eindhoven University of Technology
Recent vision foundation models (VFMs) have demonstrated proficiency in various tasks but require supervised fine-tuning to perform the task of semantic segmentation effectively. Benchmarking their performance is esse... 详细信息
来源: 评论
Multi-View Spatial-Temporal Learning for Understanding Unusual Behaviors in Untrimmed Naturalistic Driving Videos
Multi-View Spatial-Temporal Learning for Understanding Unusu...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Huy-Hung Nguyen Chi Dai Tran Long Hoang Pham Duong Nguyen-Ngoc Tran Tai Huu-Phuong Tran Duong Khac Vu Quoc Pham-Nam Ho Ngoc Doan-Minh Huynh Hyung-Min Jeon Hyung-Joon Jeon Jae Wook Jeon Department of Electrical and Computer Engineering Sungkyunkwan University Suwon South Korea
The task of Naturalistic Driving Action recognition aims to detect and temporally localize distracting driving behavior in untrimmed videos. In this paper, we introduce our framework for Track 3 of the 8 th AI City C... 详细信息
来源: 评论