咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4561-4570 订阅
排序:
StyleMix: Separating Content and Style for Enhanced Data Augmentation
StyleMix: Separating Content and Style for Enhanced Data Aug...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hong, Minui Choi, Jinwoo Kim, Gunhee Seoul Natl Univ Seoul South Korea
In spite of the great success of deep neural networks for many challenging classification tasks, the learned networks are vulnerable to overfitting and adversarial attacks. Recently, mixup based augmentation methods h... 详细信息
来源: 评论
DualAST: Dual Style-Learning Networks for Artistic Style Transfer
DualAST: Dual Style-Learning Networks for Artistic Style Tra...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Haibo Zhao, Lei Wang, Zhizhong Zhang, Huiming Zuo, Zhiwen Li, Ailin Xing, Wei Lu, Dongming Zhejiang Univ Coll Comp Sci & Technol Hangzhou Peoples R China
Artistic style transfer is an image editing task that aims at repainting everyday photographs with learned artistic styles. Existing methods learn styles from either a single style example or a collection of artworks.... 详细信息
来源: 评论
AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable Probabilistic Implicit Differentiation
AutoDO: Robust AutoAugment for Biased Data with Label Noise ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gudovskiy, Denis Rigazio, Luca Ishizaka, Shun Kozuka, Kazuki Tsukizawa, Sotaro Panasonic AI Lab Newark NJ 07102 USA AIoli Labs Phoenix AZ USA Panasonic Technol Div Osaka Japan
AutoAugment [4] has sparked an interest in automated augmentation methods for deep learning models. These methods estimate image transformation policies for train data that improve generalization to test data. While r... 详细信息
来源: 评论
Jo-SRC: A Contrastive Approach for Combating Noisy Labels
Jo-SRC: A Contrastive Approach for Combating Noisy Labels
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yao, Yazhou Sun, Zeren Zhang, Chuanyi Shen, Fumin Wu, Qi Zhang, Jian Tang, Zhenmin Nanjing Univ Sci & Technol Nanjing Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China Univ Adelaide Adelaide SA Australia Univ Technol Sydney Sydney NSW Australia
Due to the memorization effect in Deep Neural Networks (DNNs), training with noisy labels usually results in inferior model performance. Existing state-of-the-art methods primarily adopt a sample selection strategy, w... 详细信息
来源: 评论
ArtCoder: An End-to-end Method for Generating Scanning-robust Stylized QR Codes
ArtCoder: An End-to-end Method for Generating Scanning-robus...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Su, Hao Niu, Jianwei Liu, Xuefeng Li, Qingfeng Wan, Ji Xu, Mingliang Ren, Tao Beihang Univ Sch Comp Sci & Engn State Key Lab VR Technol & Syst Beijing Peoples R China Zhengzhou Univ Sch Informat Engn Ind Technol Res Inst Zhengzhou Peoples R China Beihang Univ Hangzhou Innovat Inst Beijing Peoples R China
Quick Response (QR) code is one of the most worldwide used two-dimensional codes. Traditional QR codes appear as random collections of black-and-white modules that lack visual semantics and aesthetic elements, which i... 详细信息
来源: 评论
Stochastic Whitening Batch Normalization
Stochastic Whitening Batch Normalization
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Shengdong Nezhadarya, Ehsan Fashandi, Homa Liu, Jiayi Graham, Darin Shah, Mohak LG Elect Canada Toronto AI Lab Toronto ON Canada LG Elect USA Amer R&D Lab Santa Clara CA USA
Batch Normalization (BN) is a popular technique for training Deep Neural Networks (DNNs). BN uses scaling and shifting to normalize activations of mini-batches to accelerate convergence and improve generalization. The... 详细信息
来源: 评论
Multi-Scale Feature Fusion using Channel Transformers for Guided Thermal Image Super Resolution
Multi-Scale Feature Fusion using Channel Transformers for Gu...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Raghunath Sai Puttagunta Birendra Kathariya Zhu Li George York University of Missouri-Kansas City US Air Force Academy
Thermal imaging, leveraging the infrared spectrum, offers a compelling alternative to visible spectrum (VIS) imagery in challenging environmental conditions like low- light, occlusions, and adverse weather. However, i... 详细信息
来源: 评论
Guided Integrated Gradients: an Adaptive Path Method for Removing Noise
Guided Integrated Gradients: an Adaptive Path Method for Rem...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kapishnikov, Andrei Venugopalan, Subhashini Avci, Besim Wedin, Ben Terry, Michael Bolukbasi, Tolga Google Res Mountain View CA 94043 USA
Integrated Gradients (IG) [29] is a commonly used feature attribution method for deep neural networks. While IG has many desirable properties, the method often produces spurious/noisy pixel attributions in regions tha... 详细信息
来源: 评论
ChallenCap: Monocular 3D Capture of Challenging Human Performances using Multi-Modal References
ChallenCap: Monocular 3D Capture of Challenging Human Perfor...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: He, Yannan Pang, Anqi Chen, Xin Liang, Han Wu, Minye Ma, Yuexin Xu, Lan ShanghaiTech Univ Shanghai Peoples R China Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China
Capturing challenging human motions is critical for numerous applications, but it suffers from complex motion patterns and severe self-occlusion under the monocular setting. In this paper, we propose ChallenCap - a te... 详细信息
来源: 评论
Towards Part-Based Understanding of RGB-D Scans
Towards Part-Based Understanding of RGB-D Scans
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bokhovkin, Alexey Ishimtsev, Vladislav Bogomolov, Emil Zorin, Denis Artemov, Alexey Burnaev, Evgeny Dai, Angela Tech Univ Munich Munich Germany Skolkovo Inst Sci & Technol Moscow Russia NYU New York NY 10003 USA
Recent advances in 3D semantic scene understanding have shown impressive progress in 3D instance segmentation, enabling object-level reasoning about 3D scenes;however, a finer-grained understanding is required to enab... 详细信息
来源: 评论