咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4581-4590 订阅
排序:
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects
DeFMO: Deblurring and Shape Recovery of Fast Moving Objects
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Rozumnyi, Denys Oswald, Martin R. Ferrari, Vittorio Matas, Jiri Pollefeys, Marc Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Google Res Mountain View CA 94043 USA Microsoft Mixed Real & AI Zurich Lab Zurich Switzerland Czech Tech Univ Visual Recognit Grp Prague Czech Republic
Objects moving at high speed appear significantly blurred when captured with cameras. The blurry appearance is especially ambiguous when the object has complex shape or texture. In such cases, classical methods, or ev... 详细信息
来源: 评论
Discrete-continuous Action Space Policy Gradient-based Attention for Image-Text Matching
Discrete-continuous Action Space Policy Gradient-based Atten...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yan, Shiyang Yu, Li Xie, Yuan Nanjing Univ Informat Sci & Technol Nanjing Peoples R China East China Normal Univ Shanghai Peoples R China
Image-text matching is an important multi-modal task with massive applications. It tries to match the image and the text with similar semantic information. Existing approaches do not explicitly transform the different... 详细信息
来源: 评论
SSTVOS: Sparse Spatiotemporal Transformers for Video Object Segmentation
SSTVOS: Sparse Spatiotemporal Transformers for Video Object ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Duke, Brendan Ahmed, Abdalla Wolf, Christian Aarabi, Parham Taylor, Graham W. Univ Toronto Toronto ON Canada Univ Guelph Guelph ON Canada Univ Lyon INSA Lyon LIRIS Lyon France Modiface Inc Toronto ON Canada Vector Inst Toronto ON Canada
In this paper we introduce a Transformer-based approach to video object segmentation (VOS). To address compounding error and scalability issues of prior work, we propose a scalable, end-to-end method for VOS called Sp... 详细信息
来源: 评论
Swift Parameter-free Attention Network for Efficient Super-Resolution
Swift Parameter-free Attention Network for Efficient Super-R...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Cheng Wan Hongyuan Yu Zhiqi Li Yihang Chen Yajun Zou Yuqing Liu Xuanwu Yin Kunlong Zuo Georgia Institute of Technology Xiaomi Inc
Single Image Super-Resolution (SISR) is a crucial task in low-level computer vision, aiming to reconstruct high-resolution images from low-resolution counterparts. Conventional attention mechanisms have significantly ... 详细信息
来源: 评论
SUTD-TrafficQA: A Question Answering Benchmark and an Efficient Network for Video Reasoning over Traffic Events
SUTD-TrafficQA: A Question Answering Benchmark and an Effici...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xu, Li Huang, He Liu, Jun Singapore Univ Technol & Design Informat Syst Technol & Design Singapore Singapore
Traffic event cognition and reasoning in videos is an important task that has a wide range of applications in intelligent transportation, assisted driving, and autonomous vehicles. In this paper, we create a novel dat... 详细信息
来源: 评论
Uncalibrated Neural Inverse Rendering for Photometric Stereo of General Surfaces
Uncalibrated Neural Inverse Rendering for Photometric Stereo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kaya, Berk Kumar, Suryansh Oliveira, Carlos Ferrari, Vittorio Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Google Res Mountain View CA USA Katholieke Univ Leuven Leuven Belgium
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem. For training models to solve the problem, existing neural network-based methods either require exact light directio... 详细信息
来源: 评论
Open World Compositional Zero-Shot Learning
Open World Compositional Zero-Shot Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mancini, Massimiliano Naeem, Muhammad Ferjad Xian, Yongqin Akata, Zeynep Univ Tubingen Tubingen Germany Tech Univ Munich Munich Germany MPI Informat Saarbrucken Germany MPI Intelligent Syst Saarbrucken Germany
Compositional Zero-Shot learning (CZSL) requires to recognize state-object compositions unseen during training. In this work, instead of assuming prior knowledge about the unseen compositions, we operate in the open w... 详细信息
来源: 评论
SceneGraphFusion: Incremental 3D Scene Graph Prediction from RGB-D Sequences
SceneGraphFusion: Incremental 3D Scene Graph Prediction from...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, Shun-Cheng Wald, Johanna Tateno, Keisuke Navab, Nassir Tombari, Federico Tech Univ Munich Munich Germany Google Mountain View CA 94043 USA
Scene graphs are a compact and explicit representation successfully used in a variety of 2D scene understanding tasks. This work proposes a method to incrementally build up semantic scene graphs from a 3D environment ... 详细信息
来源: 评论
Learning Tensor Low-Rank Prior for Hyperspectral Image Reconstruction
Learning Tensor Low-Rank Prior for Hyperspectral Image Recon...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Shipeng Wang, Lizhi Zhang, Lei Huang, Hua Xi An Jiao Tong Univ Xian Peoples R China Beijing Inst Technol Beijing Peoples R China Beijing Normal Univ Beijing Peoples R China
Snapshot hyperspectral imaging has been developed to capture the spectral information of dynamic scenes. In this paper, we propose a deep neural network by learning the tensor low-rank prior of hyperspectral images (H... 详细信息
来源: 评论
NeuralFusion: Online Depth Fusion in Latent Space
NeuralFusion: Online Depth Fusion in Latent Space
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Weder, Silvan Schonberger, Johannes L. Pollefeys, Marc Oswald, Martin R. Swiss Fed Inst Technol Dept Comp Sci Zurich Switzerland Microsoft Mixed Real & AI Zurich Lab Zurich Switzerland
We present a novel online depth map fusion approach that learns depth map aggregation in a latent feature space. While previous fusion methods use an explicit scene representation like signed distance functions (SDFs)... 详细信息
来源: 评论