咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4591-4600 订阅
排序:
MIST: Multiple Instance Spatial Transformer
MIST: Multiple Instance Spatial Transformer
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Angles, Baptiste Jin, Yuhe Kornblith, Simon Tagliasacchi, Andrea Yi, Kwang Moo Univ Victoria Victoria BC Canada Univ British Columbia Vancouver BC Canada Google Res Mountain View CA USA
We propose a deep network that can be trained to tackle image reconstruction and classification problems that involve detection of multiple object instances, without any supervision regarding their whereabouts. The ne... 详细信息
来源: 评论
Pose-Guided Human Animation from a Single Image in the Wild
Pose-Guided Human Animation from a Single Image in the Wild
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yoon, Jae Shin Liu, Lingjie Golyanik, Vladislav Sarkar, Kripasindhu Park, Hyun Soo Theobalt, Christian Univ Minnesota Minneapolis MN 55455 USA Max Planck Inst Informat SIC Saarbrucken Germany
We present a new pose transfer method for synthesizing a human animation from a single image of a person controlled by a sequence of body poses. Existing pose transfer methods exhibit significant visual artifacts when... 详细信息
来源: 评论
Point Cloud Upsampling via Disentangled Refinement
Point Cloud Upsampling via Disentangled Refinement
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Ruihui Li, Xianzhi Heng, Pheng-Ann Fu, Chi-Wing Chinese Univ Hong Kong Hong Kong Peoples R China
Point clouds produced by 3D scanning are often sparse, non-uniform, and noisy. Recent upsampling approaches aim to generate a dense point set, while achieving both distribution uniformity and proximity-to-surface, and... 详细信息
来源: 评论
Semantic Segmentation for Real Point Cloud Scenes via Bilateral Augmentation and Adaptive Fusion
Semantic Segmentation for Real Point Cloud Scenes via Bilate...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Qiu, Shi Anwar, Saeed Barnes, Nick Australian Natl Univ Canberra ACT Australia CSIRO Data61 Sydney NSW Australia
Given the prominence of current 3D sensors, a fine-grained analysis on the basic point cloud data is worthy of further investigation. Particularly, real point cloud scenes can intuitively capture complex surroundings ... 详细信息
来源: 评论
QAttn: Efficient GPU Kernels for mixed-precision vision Transformers
QAttn: Efficient GPU Kernels for mixed-precision Vision Tran...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Piotr Kluska Adrián Castelló Florian Scheidegger A. Cristiano I. Malossi Enrique S. Quintana-Ortí IBM Research Europe Universitat Politècnica de València Universitat Politècnica de València IBM Research Europe
vision Transformers have demonstrated outstanding performance in computer vision tasks. Nevertheless, this superior performance for large models comes at the expense of increasing memory usage for storing the paramete... 详细信息
来源: 评论
LayoutGMN: Neural Graph Matching for Structural Layout Similarity
LayoutGMN: Neural Graph Matching for Structural Layout Simil...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Patil, Akshay Gadi Li, Manyi Fisher, Matthew Savva, Manolis Zhang, Hao Simon Fraser Univ Burnaby BC Canada Adobe Res San Jose CA USA
We present a deep neural network to predict structural similarity between 2D layouts by leveraging Graph Matching Networks (GMN). Our network, coined LayoutGMN, learns the layout metric via neural graph matching, usin... 详细信息
来源: 评论
Progressive Temporal Feature Alignment Network for Video Inpainting
Progressive Temporal Feature Alignment Network for Video Inp...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zou, Xueyan Yang, Linjie Liu, Ding Lee, Yong Jae ByteDance Inc Beijing Peoples R China Univ Calif Davis Davis CA 95616 USA
Video inpainting aims to fill spatio-temporal "corrupted" regions with plausible content. To achieve this goal, it is necessary to find correspondences from neighbouring frames to faithfully hallucinate the ... 详细信息
来源: 评论
Mixed-Privacy Forgetting in Deep Networks
Mixed-Privacy Forgetting in Deep Networks
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Golatkar, Aditya Achille, Alessandro Ravichandran, Avinash Polito, Marzia Soatto, Stefano Amazon Web Serv Seattle WA 98109 USA Univ Calif Los Angeles Los Angeles CA 90024 USA
We show that the influence of a subset of the training samples can be removed - or "forgotten" - from the weights of a network trained on large-scale image classification tasks, and we provide strong computa... 详细信息
来源: 评论
Spatio-temporal Contrastive Domain Adaptation for Action recognition
Spatio-temporal Contrastive Domain Adaptation for Action Rec...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Song, Xiaolin Zhao, Sicheng Yang, Jingyu Yue, Huanjing Xu, Pengfei Hu, Runbo Chai, Hua Tianjin Univ Tianjin Peoples R China Univ Calif Berkeley Berkeley CA 94720 USA Didi Chuxing Beijing Peoples R China
Compared with image-based UDA, video-based UDA is comprehensive to bridge the domain shift on both spatial representation and temporal dynamics. Most previous works focus on short-term modeling and alignment with fram... 详细信息
来源: 评论
Cache and Reuse: Rethinking the Efficiency of On-device Transfer Learning
Cache and Reuse: Rethinking the Efficiency of On-device Tran...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Yuedong Yang Hung-Yueh Chiang Guihong Li Diana Marculescu Radu Marculescu Chandra Family Department of Electrical and Computer Engineering The University of Texas at Austin
Training only the last few layers in deep neural networks has been considered an effective strategy for enhancing the efficiency of on-device training. Prior work has adopted this approach and focused on accelerating ... 详细信息
来源: 评论