咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,849 篇 英文
  • 9 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4641-4650 订阅
Parameter Efficient Fine-tuning of Self-supervised ViTs without Catastrophic Forgetting
Parameter Efficient Fine-tuning of Self-supervised ViTs with...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Reza Akbarian Bafghi Nidhin Harilal Claire Monteleoni Maziar Raissi University of Colorado Boulder INRIA Paris University of California Riverside
Artificial neural networks often suffer from catastrophic forgetting, where learning new concepts leads to a complete loss of previously acquired knowledge. We observe that this issue is particularly magnified in visi... 详细信息
来源: 评论
U-MedSAM: Uncertainty-Aware MedSAM for Medical Image Segmentation  1
收藏 引用
International Challenge on Segment Anything in Medical Images on Laptop held in conjunction with the ieee/cvf conference on computer vision and pattern recognition, CVPR 2024
作者: Wang, Xin Liu, Xiaoyu Huang, Peng Huang, Pu Hu, Shu Zhu, Hongtu Albany United States School of Physics and Electronics Shandong Normal University Jinan China School of Computing and Artificial Intelligence Southwest Jiaotong University Chengdu China Department of Computer and Information Technology Purdue University West Lafayette United States University of North Carolina at Chapel Hill Chapel Hill United States
Medical Image Foundation Models have proven to be powerful tools for mask prediction across various datasets. However, accurately assessing the uncertainty of their predictions remains a significant challenge. To addr... 详细信息
来源: 评论
Curriculum Graph Co-Teaching for Multi-Target Domain Adaptation
Curriculum Graph Co-Teaching for Multi-Target Domain Adaptat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Roy, Subhankar Krivosheev, Evgeny Zhong, Zhun Sebe, Nicu Ricci, Elisa Univ Trento Trento TN Italy Fdn Bruno Kessler Povo TN Italy
In this paper we address multi-target domain adaptation (MTDA), where given one labeled source dataset and multiple unlabeled target datasets that differ in data distributions, the task is to learn a robust predictor ... 详细信息
来源: 评论
Forensic Iris Image Synthesis
Forensic Iris Image Synthesis
收藏 引用
ieee Winter Applications and computer vision workshops (WACVW)
作者: Rasel Ahmed Bhuiyan Adam Czajka Department of Computer Science and Engineering 384 Fitzpatrick Hall of Engineering University of Notre Dame Notre Dame Indiana USA
Post-mortem iris recognition is an emerging application of iris-based human identification in a forensic setup, able to correctly identify deceased subjects even three weeks post-mortem. This technique thus is conside...
来源: 评论
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation
Learning Dynamic Network Using a Reuse Gate Function in Semi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Park, Hyojin Yoo, Jayeon Jeong, Seohyeong Venkatesh, Ganesh Kwak, Nojun Seoul Natl Univ Seoul South Korea Facebook Inc Menlo Pk CA USA AIRS Co Hyundai Motor Grp Seoul South Korea SNU Seoul South Korea
Current state-of-the-art approaches for Semi-supervised Video Object Segmentation (Semi-VOS) propagates information from previous frames to generate segmentation mask for the current frame. This results in high-qualit... 详细信息
来源: 评论
What If We Only Use Real Datasets for Scene Text recognition? Toward Scene Text recognition With Fewer Labels
What If We Only Use Real Datasets for Scene Text Recognition...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Baek, Jeonghun Matsui, Yusuke Aizawa, Kiyoharu Univ Tokyo Tokyo Japan
Scene text recognition (STR) task has a common practice: All state-of-the-art STR models are trained on large synthetic data. In contrast to this practice, training STR models only on fewer real labels (STR with fewer... 详细信息
来源: 评论
Learning Feature Aggregation for Deep 3D Morphable Models
Learning Feature Aggregation for Deep 3D Morphable Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Zhixiang Kim, Tae-Kyun Imperial Coll London London England Korea Adv Inst Sci & Technol Seoul South Korea
3D morphable models are widely used for the shape representation of an object class in computer vision and graphics applications. In this work, we focus on deep 3D morphable models that directly apply deep learning on... 详细信息
来源: 评论
Disentangling Label Distribution for Long-tailed Visual recognition
Disentangling Label Distribution for Long-tailed Visual Reco...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hong, Youngkyu Han, Seungju Choi, Kwanghee Seo, Seokjun Kim, Beomsu Chang, Buru Hyperconnect Seoul South Korea
The current evaluation protocol of long-tailed visual recognition trains the classification model on the long-tailed source label distribution and evaluates its performance on the uniform target label distribution. Su... 详细信息
来源: 评论
Learning-based Image Registration with Meta-Regularization
Learning-based Image Registration with Meta-Regularization
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Al Safadi, Ebrahim Song, Xubo Oregon Hlth & Sci Univ Portland OR 97201 USA Amazon Seattle WA 98121 USA
We introduce a meta-regularization framework for learning-based image registration. Current learning-based image registration methods use high-resolution architectures such as U-Nets to produce spatial transformations... 详细信息
来源: 评论
Keep your Eyes on the Lane: Real-time Attention-guided Lane Detection
Keep your Eyes on the Lane: Real-time Attention-guided Lane ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Tabelini, Lucas Berriel, Rodrigo Paixao, Thiago M. Badue, Claudine De Souza, Alberto F. Oliveira-Santos, Thiago Univ Fed Espirito Santo UFES Vitoria ES Brazil Inst Fed Espirito Santo IFES Vitoria ES Brazil
Modern lane detection methods have achieved remarkable performances in complex real-world scenarios, but many have issues maintaining real-time efficiency, which is important for autonomous vehicles. In this work, we ... 详细信息
来源: 评论