咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4681-4690 订阅
排序:
Improving the Transferability of Adversarial Samples with Adversarial Transformations
Improving the Transferability of Adversarial Samples with Ad...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, Weibin Su, Yuxin Lyu, Michael R. King, Irwin Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China
Although deep neural networks (DNNs) have achieved tremendous performance in diverse vision challenges, they are surprisingly susceptible to adversarial examples, which are born of intentionally perturbing benign samp... 详细信息
来源: 评论
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Environments from a Single Moving Camera
MonoRec: Semi-Supervised Dense Reconstruction in Dynamic Env...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wimbauer, Felix Yang, Nan von Stumberg, Lukas Zeller, Niclas Cremers, Daniel Tech Univ Munich Munich Germany Artisense Palo Alto CA USA
In this paper, we propose MonoRec, a semi-supervised monocular dense reconstruction architecture that predicts depth maps from a single moving camera in dynamic environments. MonoRec is based on a multi-view stereo se... 详细信息
来源: 评论
Mutual CRF-GNN for Few-shot Learning
Mutual CRF-GNN for Few-shot Learning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Tang, Shixiang Chen, Dapeng Bai, Lei Liu, Kaijian Ge, Yixiao Ouyang, Wanli Univ Sydney SenseTime Comp Vis Grp Camperdown NSW Australia Sensetime Grp Ltd Hong Kong Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
Graph-neural-networks (GNN) is a rising trend for few-shot learning. A critical component in GNN is the affinity. Typically, affinity in GNN is mainly computed in the feature space, e.g., pairwise features, and does n... 详细信息
来源: 评论
Pixel Codec Avatars
Pixel Codec Avatars
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ma, Shugao Simon, Tomas Saragih, Jason Wang, Dawei Li, Yuecheng De La Torre, Fernando Sheikh, Yaser Facebook Real Labs Res Menlo Pk CA 94025 USA
Telecommunication with photorealistic avatars in virtual or augmented reality is a promising path for achieving authentic face-to-face communication in 3D over remote physical distances. In this work, we present the P... 详细信息
来源: 评论
Personalized Outfit Recommendation with Learnable Anchors
Personalized Outfit Recommendation with Learnable Anchors
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lu, Zhi Hu, Yang Chen, Yan Zeng, Bing Univ Elect Sci & Technol China Chengdu Sichuan Peoples R China Univ Sci & Technol China Hefei Anhui Peoples R China
The multimedia community has recently seen a tremendous surge of interest in the fashion recommendation problem. A lot of efforts have been made to model the compatibility between fashion items. Some have also studied... 详细信息
来源: 评论
Amalgamating Knowledge from Heterogeneous Graph Neural Networks
Amalgamating Knowledge from Heterogeneous Graph Neural Netwo...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jing, Yongcheng Yang, Yiding Wang, Xinchao Song, Mingli Tao, Dacheng Univ Sydney Sydney NSW Australia Stevens Inst Technol Hoboken NJ 07030 USA Natl Univ Singapore Singapore Singapore Zhejiang Univ Hangzhou Peoples R China
In this paper, we study a novel knowledge transfer task in the domain of graph neural networks (GNNs). We strive to train a multi-talented student GNN, without accessing human annotations, that "amalgamates"... 详细信息
来源: 评论
Read Like Humans: Autonomous, Bidirectional and Iterative Language Modeling for Scene Text recognition
Read Like Humans: Autonomous, Bidirectional and Iterative La...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Fang, Shancheng Xie, Hongtao Wang, Yuxin Mao, Zhendong Zhang, Yongdong Univ Sci & Technol China Hefei Anhui Peoples R China
Linguistic knowledge is of great benefit to scene text recognition. However, how to effectively model linguistic rules in end-to-end deep networks remains a research challenge. In this paper, we argue that the limited... 详细信息
来源: 评论
NeX: Real-time View Synthesis with Neural Basis Expansion
NeX: Real-time View Synthesis with Neural Basis Expansion
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wizadwongsa, Suttisak Phongthawee, Pakkapon Yenphraphai, Jiraphon Suwajanakorn, Supasorn VISTEC Rayong Thailand
We present NeX, a new approach to novel view synthesis based on enhancements of multiplane image (MPI) that can reproduce next-level view-dependent effects-in real time. Unlike traditional MP! that uses a set of simpl... 详细信息
来源: 评论
CDFI: Compression-Driven Network Design for Frame Interpolation
CDFI: Compression-Driven Network Design for Frame Interpolat...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ding, Tianyu Liang, Luming Zhu, Zhihui Zharkov, Ilya Johns Hopkins Univ Baltimore MD 21218 USA Microsoft Redmond WA 98052 USA Univ Denver Denver CO 80208 USA Microsoft Appl Sci Grp Redmond WA 98052 USA
DNN-based frame interpolation-that generates the intermediate frames given two consecutive frames-typically relies on heavy model architectures with a huge number of features, preventing them from being deployed on sy... 详细信息
来源: 评论
WOAD: Weakly Supervised Online Action Detection in Untrimmed Videos
WOAD: Weakly Supervised Online Action Detection in Untrimmed...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gao, Mingfei Zhou, Yingbo Xu, Ran Socher, Richard Xiong, Caiming Salesforce Res Palo Alto CA 94301 USA
Online action detection in untrimmed videos aims to identify an action as it happens, which makes it very important for real-time applications. Previous methods rely on tedious annotations of temporal action boundarie... 详细信息
来源: 评论