咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4711-4720 订阅
排序:
Learning by Watching
Learning by Watching
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Jimuyang Ohn-Bar, Eshed Boston Univ Boston MA 02215 USA
When in a new situation or geographical location, human drivers have an extraordinary ability to watch others and learn maneuvers that they themselves may have never performed. In contrast, existing techniques for lea... 详细信息
来源: 评论
Improving the Robustness of 3D Human Pose Estimation: A Benchmark Dataset and Learning from Noisy Input
Improving the Robustness of 3D Human Pose Estimation: A Benc...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Trung-Hieu Hoang Mona Zehni Huy Phan Duc Minh Vo Minh N. Do University of Illinois at Urbana-Champaign USA VinUniversity Ha Noi Vietnam The University of Tokyo Japan
Despite the promising performance of current 3D human pose estimation techniques, understanding and enhancing their robustness on challenging in-the-wild videos remain an open problem. In this work, we focus on buildi... 详细信息
来源: 评论
StablePose: Learning 6D Object Poses from Geometrically Stable Patches
StablePose: Learning 6D Object Poses from Geometrically Stab...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Shi, Yifei Huang, Junwen Xu, Xin Zhang, Yifan Xu, Kai Natl Univ Def Technol Changsha Peoples R China
We introduce the concept of geometric stability to the problem of 6D object pose estimation and propose to learn pose inference based on geometrically stable patches extracted from observed 3D point clouds. According ... 详细信息
来源: 评论
Interpolation-based Semi-supervised Learning for Object Detection
Interpolation-based Semi-supervised Learning for Object Dete...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jeong, Jisoo Verma, Vikas Hyun, Minsung Kannala, Juho Kwak, Nojun Seou1 Natl Univ Seoul South Korea Aalto Univ Espoo Finland Mila Quebec Artificial Intelligence Inst Montreal PQ Canada SK Hynix Icheon Si South Korea
Despite the data labeling cost for the object detection tasks being substantially more than that of the classification tasks, semi-supervised learning methods for object detection have not been studied much. In this p... 详细信息
来源: 评论
Incremental Learning via Rate Reduction
Incremental Learning via Rate Reduction
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, Ziyang Baek, Christina You, Chong Ma, Yi Cornell Ithaca NY 14850 USA Univ Calif Berkeley Berkeley CA USA
Current deep learning architectures suffer from catastrophic forgetting, a failure to retain knowledge of previously learned classes when incrementally trained on new classes. The fundamental roadblock faced by deep l... 详细信息
来源: 评论
Self-supervised Video Hashing via Bidirectional Transformers
Self-supervised Video Hashing via Bidirectional Transformers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Shuyan Li, Xiu Lu, Jiwen Zhou, Jie Tsinghua Univ Dept Automat Beijing Peoples R China Beijing Natl Res Ctr Informat Sci & Technol Beijing Peoples R China Tsinghua Univ Grad Sch Shenzhen Beijing Peoples R China
Most existing unsupervised video hashing methods are built on unidirectional models with less reliable training objectives, which underuse the correlations among frames and the similarity structure between videos. To ... 详细信息
来源: 评论
Camera Pose Matters: Improving Depth Prediction by Mitigating Pose Distribution Bias
<i>Camera Pose Matters</i>: Improving Depth Prediction by Mi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Yunhan Kong, Shu Fowlkes, Charless UC Irvine Irvine CA 92697 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA
Monocular depth predictors are typically trained on large-scale training sets which are naturally biased w.r.t the distribution of camera poses. As a result, trained predictors fail to make reliable depth predictions ... 详细信息
来源: 评论
Tackling the Ill-Posedness of Super-Resolution through Adaptive Target Generation
Tackling the Ill-Posedness of Super-Resolution through Adapt...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jo, Younghyun Oh, Seoung Wug Vajda, Peter Kim, Seon Joo Yonsei Univ Seoul South Korea Adobe Res San Jose CA USA Facebook Menlo Pk CA USA
By the one-to-many nature of the super-resolution (SR) problem, a single low-resolution (LR) image can be mapped to many high-resolution (HR) images. However, learning based SR algorithms are trained to map an LR imag... 详细信息
来源: 评论
NeuralHumanFVV: Real-Time Neural Volumetric Human Performance Rendering using RGB Cameras
NeuralHumanFVV: Real-Time Neural Volumetric Human Performanc...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Suo, Xin Jiang, Yuheng Lin, Pei Zhang, Yingliang Wu, Minye Guo, Kaiwen Xu, Lan ShanghaiTech Univ Shanghai Peoples R China Dgene Shanghai Peoples R China Google Mountain View CA 94043 USA Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China
4D reconstruction and rendering of human activities is critical for immersive VR/AR experience. Recent advances still fail to recover fine geometry and texture results with the level of detail present in the input ima... 详细信息
来源: 评论
Deep Video Matting via Spatio-Temporal Alignment and Aggregation
Deep Video Matting via Spatio-Temporal Alignment and Aggrega...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sun, Yanan Wang, Guanzhi Gu, Qiao Tang, Chi-Keung Tai, Yu-Wing HKUST Daejeon South Korea Stanford Univ Stanford CA 94305 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA Kuaishou Technol Seoul South Korea
Despite the significant progress made by deep learning in natural image matting, there has been so far no representative work on deep learning for video matting due to the inherent technical challenges in reasoning te... 详细信息
来源: 评论