咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4731-4740 订阅
排序:
The Spatially-Correlative Loss for Various Image Translation Tasks
The Spatially-Correlative Loss for Various Image Translation...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zheng, Chuanxia Cham, Tat-Jen Cai, Jianfei Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore Monash Univ Dept Data Sci & AI Melbourne Vic Australia
We propose a novel spatially-correlative loss that is simple, efficient and yet effective for preserving scene structure consistency while supporting large appearance changes during unpaired image-to-image (I2I) trans... 详细信息
来源: 评论
Multi-Modal Fusion of Event and RGB for Monocular Depth Estimation Using a Unified Transformer-based Architecture
Multi-Modal Fusion of Event and RGB for Monocular Depth Esti...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Anusha Devulapally Md Fahim Faysal Khan Siddharth Advani Vijaykrishnan Narayanan The Pennsylvania State University Samsung Electronics America
In the field of robotics and autonomous navigation, accurate pixel-level depth estimation has gained significant importance. Event cameras or dynamic vision sensors, capture asynchronous changes in brightness at the p... 详细信息
来源: 评论
Neural Scene Graphs for Dynamic Scenes
Neural Scene Graphs for Dynamic Scenes
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ost, Julian Mannan, Fahim Thuerey, Nils Knodt, Julian Heide, Felix Algolux Montreal PQ Canada Tech Univ Munich Munich Germany Princeton Univ Princeton NJ 08544 USA
Recent implicit neural rendering methods have demonstrated that it is possible to learn accurate view synthesis for complex scenes by predicting their volumetric density and color supervised solely by a set of RGB ima... 详细信息
来源: 评论
Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation
Background-Aware Pooling and Noise-Aware Loss for Weakly-Sup...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Oh, Youngmin Kim, Beomjun Ham, Bumsub Yonsei Univ Sch Elect & Elect Engn Seoul South Korea
We address the problem of weakly-supervised semantic segmentation (WSSS) using bounding box annotations. Although object bounding boxes are good indicators to segment corresponding objects, they do not specify object ... 详细信息
来源: 评论
Rainbow Memory: Continual Learning with a Memory of Diverse Samples
Rainbow Memory: Continual Learning with a Memory of Diverse ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Bang, Jihwan Kim, Heesu Yoo, YoungJoon Ha, Jung-Woo Choi, Jonghyun Search Solut Inc Thousand Oaks CA USA NAVER CLOVA Seongnam South Korea NAVER AI Lab Seongnam South Korea GIST Gwangju South Korea
Continual learning is a realistic learning scenario for AI models. Prevalent scenario of continual learning, however;assumes disjoint sets of classes as tasks and is less realistic rather artificial. Instead, we focus... 详细信息
来源: 评论
PP-SAM: Perturbed Prompts for Robust Adaption of Segment Anything Model for Polyp Segmentation
PP-SAM: Perturbed Prompts for Robust Adaption of Segment Any...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Md Mostafijur Rahman Mustafa Munir Debesh Jha Ulas Bagci Radu Marculescu The University of Texas at Austin Northwestern University
The Segment Anything Model (SAM), originally designed for general-purpose segmentation tasks, has been used recently for polyp segmentation. Nonetheless, fine-tuning SAM with data from new imaging centers or clinics p... 详细信息
来源: 评论
M3P: Learning Universal Representations via Multitask Multilingual Multimodal Pre-training
M<SUP>3</SUP>P: Learning Universal Representations via Multi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ni, Minheng Huang, Haoyang Su, Lin Cui, Edward Bharti, Taroon Wang, Lijuan Zhang, Dongdong Duan, Nan Harbin Inst Technol Res Ctr Social Comp & Informat Retrieval Harbin Peoples R China Microsoft Res Asia Nat Language Comp Shanghai Peoples R China Microsoft Bing Multimedia Team Shanghai Peoples R China Microsoft Cloud AI Redmond WA USA
We present (MP)-P-3, a Multitask Multilingual Multimodal Pre-trained model that combines multilingual pre-training and multimodal pre-training into a unified framework via multitask pre-training. Our goal is to learn ... 详细信息
来源: 评论
Multispectral Photometric Stereo for Spatially-Varying Spectral Reflectances: A well posed problem?
Multispectral Photometric Stereo for Spatially-Varying Spect...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Guo, Heng Okura, Fumio Shi, Boxin Funatomi, Takuya Mukaigawa, Yasuhiro Matsushita, Yasuyuki Osaka Univ Suita Osaka Japan Peking Univ Beijing Peoples R China Peng Cheng Lab Beijing Peoples R China Nara Inst Sci & Technol Nara Japan
Multispectral photometric stereo (MPS) aims at recovering the surface normal of a scene from a single-shot multispectral image, which is known as an ill-posed problem. To make the problem well-posed, existing MPS meth... 详细信息
来源: 评论
Prototypical Cross-domain Self-supervised Learning for Few-shot Unsupervised Domain Adaptation
Prototypical Cross-domain Self-supervised Learning for Few-s...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yue, Xiangyu Zheng, Zangwei Zhang, Shanghang Gao, Yang Darrell, Trevor Keutzer, Kurt Vincentelli, Alberto Sangiovanni Univ Calif Berkeley Berkeley CA 94720 USA Nanjing Univ Nanjing Peoples R China Tsinghua Univ Beijing Peoples R China
Unsupervised Domain Adaptation (UDA) transfers predictive models from a fully-labeled source domain to an unlabeled target domain. In some applications, however, it is expensive even to collect labels in the source do... 详细信息
来源: 评论
Key Patches Are All You Need: A Multiple Instance Learning Framework For Robust Medical Diagnosis
Key Patches Are All You Need: A Multiple Instance Learning F...
收藏 引用
ieee computer Society conference on computer vision and pattern recognition workshops (CVPRW)
作者: D. J. Araújo M. R. Verdelho A. Bissoto J. C. Nascimento C. Santiago C. Barata LARSyS Instituto Superior Técnico Institute for Systems and Robotics Portugal Institute of Computing Recod.ai Lab University of Campinas Brazil Lisbon ELLIS Unit
Deep learning models have revolutionized the field of medical image analysis, due to their outstanding performances. However, they are sensitive to spurious correlations, often taking advantage of dataset bias to impr... 详细信息
来源: 评论