咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献

馆藏范围

  • 12,857 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,435 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,849 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12857 条 记 录,以下是4751-4760 订阅
排序:
Tree-like Decision Distillation
Tree-like Decision Distillation
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Song, Jie Zhang, Haofei Wang, Xinchao Xue, Mengqi Chen, Ying Sun, Li Tao, Dacheng Song, Mingli Zhejiang Univ Hangzhou Peoples R China Natl Univ Singapore Singapore Singapore Univ Sydney Sydney NSW Australia Stevens Inst Technol Hoboken NJ 07030 USA
Knowledge distillation pursues a diminutive yet well-behaved student network by harnessing the knowledge learned by a cumbersome teacher model. Prior methods achieve this by making the student imitate shallow behavior... 详细信息
来源: 评论
Exploring Heterogeneous Clues for Weakly-Supervised Audio-Visual Video Parsing
Exploring Heterogeneous Clues for Weakly-Supervised Audio-Vi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, Yu Yang, Yi Baidu Res Beijing Peoples R China Univ Technol Sydney ReLER Sydney NSW Australia
We investigate the weakly-supervised audio-visual video parsing task, which aims to parse a video into temporal event segments and predict the audible or visible event categories. The task is challenging since there o... 详细信息
来源: 评论
Asymmetric metric learning for knowledge transfer
Asymmetric metric learning for knowledge transfer
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Budnik, Mateusz Avrithis, Yannis Univ Rennes IRISA CNRS INRIA Rennes France
Knowledge transfer from large teacher models to smaller student models has recently been studied for metric learning, focusing on fine-grained classification. In this work, focusing on instance-level image retrieval, ... 详细信息
来源: 评论
CoCosNet v2: Full-Resolution Correspondence Learning for Image Translation
CoCosNet v2: Full-Resolution Correspondence Learning for Ima...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhou, Xingran Zhang, Bo Zhang, Ting Zhang, Pan Bao, Jianmin Chen, Dong Zhang, Zhongfei Wen, Fang Zhejiang Univ Hangzhou Zhejiang Peoples R China Microsoft Res Asia Beijing Peoples R China SUNY Binghamton Binghamton NY 13902 USA USTC Hefei Anhui Peoples R China
We present the full-resolution correspondence learning for cross-domain images, which aids image translation. We adopt a hierarchical strategy that uses the correspondence from coarse level to guide the fine levels. A... 详细信息
来源: 评论
Instance Level Affinity-Based Transfer for Unsupervised Domain Adaptation
Instance Level Affinity-Based Transfer for Unsupervised Doma...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sharma, Astuti Kalluri, Tarun Chandraker, Manmohan Univ Calif San Diego La Jolla CA 92093 USA
Domain adaptation deals with training models using large scale labeled data from a specific source domain and then adapting the knowledge to certain target domains that have few or no labels. Many prior works learn do... 详细信息
来源: 评论
CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models
CausalVAE: Disentangled Representation Learning via Neural S...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yang, Mengyue Liu, Furui Chen, Zhitang Shen, Xinwei Hao, Jianye Wang, Jun Huawei Noahs Ark Lab Shenzhen Peoples R China UCL London England Hong Kong Univ Sci & Technol Hong Kong Peoples R China
Learning disentanglement aims at finding a low dimensional representation which consists of multiple explanatory and generative factors of the observational data. The framework of variational autoencoder (VAE) is comm... 详细信息
来源: 评论
Pixel-aligned Volumetric Avatars
Pixel-aligned Volumetric Avatars
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Raj, Amit Zollhofer, Michael Simon, Tomas Saragih, Jason Saito, Shunsuke Hays, James Lombardi, Stephen Georgia Inst Technol Atlanta GA 30332 USA Facebook Real Labs Res Menlo Pk CA USA
Acquisition and rendering of photo-realistic human heads is a highly challenging research problem of particular importance for virtual telepresence. Currently, the highest quality is achieved by volumetric approaches ... 详细信息
来源: 评论
Person Re-identification using Heterogeneous Local Graph Attention Networks
Person Re-identification using Heterogeneous Local Graph Att...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Zhong Zhang, Haijia Liu, Shuang Tianjin Normal Univ Tianjin Key Lab Wireless Mobile Commun & Power Tr Tianjin Peoples R China
Recently, some methods have focused on learning local relation among parts of pedestrian images for person reidentification (Re-ID), as it offers powerful representation capabilities. However, they only provide the in... 详细信息
来源: 评论
Hierarchical Lovasz Embeddings for Proposal-free Panoptic Segmentation
Hierarchical Lovasz Embeddings for Proposal-free Panoptic Se...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kerola, Tommi Li, Jie Kanehira, Atsushi Kudo, Yasunori Vallet, Alexis Gaidon, Adrien Preferred Networks Inc Tokyo Japan Toyota Res Inst TRI Los Altos CA USA
Panoptic segmentation brings together two separate tasks: instance and semantic segmentation. Although they are related, unifying them faces an apparent paradox: how to learn simultaneously instance-specific and categ... 详细信息
来源: 评论
Generic Perceptual Loss for Modeling Structured Output Dependencies
Generic Perceptual Loss for Modeling Structured Output Depen...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Liu, Yifan Chen, Hao Chen, Yu Yin, Wei Shen, Chunhua Univ Adelaide Adelaide SA Australia Automind Vancouver BC Canada Monash Univ Clayton Vic Australia
The perceptual loss has been widely used as an effective loss term in image synthesis tasks including image super-resolution [16], and style transfer [14]. It was believed that the success lies in the high-level perce... 详细信息
来源: 评论