咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4801-4810 订阅
排序:
FBI-Denoiser: Fast Blind Image Denoiser for Poisson-Gaussian Noise
FBI-Denoiser: Fast Blind Image Denoiser for Poisson-Gaussian...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Byun, Jaeseok Cha, Sungmin Moon, Taesup Sungkyunkwan Univ Dept Elect & Comp Engn Suwon South Korea Seoul Natl Univ Dept Elect & Comp Engn Seoul South Korea
We consider the challenging blind denoising problem for Poisson-Gaussian noise, in which no additional information about clean images or noise level parameters is available. Particularly, when only "single" ... 详细信息
来源: 评论
Dancing under the stars: video denoising in starlight
Dancing under the stars: video denoising in starlight
收藏 引用
2022 ieee/cvf conference on computer vision and pattern recognition, CVPR 2022
作者: Monakhova, Kristina Richter, Stephan R. Waller, Laura Koltun, Vladlen Uc Berkeley United States Intel Labs
Imaging in low light is extremely challenging due to low photon counts. Using sensitive CMOS cameras, it is currently possible to take videos at night under moonlight (0.05-0.3 lux illumination). In this paper, we dem... 详细信息
来源: 评论
AdaMixer: A Fast-Converging Query-Based Object Detector
AdaMixer: A Fast-Converging Query-Based Object Detector
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Gao, Ziteng Wang, Limin Han, Bing Guo, Sheng Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China Ant Grp MYbank Hangzhou Peoples R China
Traditional object detectors employ the dense paradigm of scanning over locations and scales in an image. The recent query-based object detectors break this convention by decoding image features with a set of learnabl... 详细信息
来源: 评论
All You Need is Beyond a Good Init: Exploring Better Solution for Training Extremely Deep Convolutional Neural Networks with Orthonormality and Modulation  30
All You Need is Beyond a Good Init: Exploring Better Solutio...
收藏 引用
30th ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xie, Di Xiong, Jiang Pu, Shiliang Hikvis Res Inst Hangzhou Zhejiang Peoples R China
Deep neural network is difficult to train and this predicament becomes worse as the depth increases. The essence of this problem exists in the magnitude of backpropagated errors that will result in gradient vanishing ... 详细信息
来源: 评论
Gated Fields: Learning Scene Reconstruction from Gated Videos
Gated Fields: Learning Scene Reconstruction from Gated Video...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ramazzina, Andrea Walz, Stefanie Dahal, Pragyan Bijelic, Mario Heide, Felix Mercedes Benz Stuttgart Germany Saarland Univ Saarbrucken Germany Politecn Milan Milan Italy Torc Robot Blacksburg VA USA Princeton Univ Princeton NJ 08544 USA
Reconstructing outdoor 3D scenes from temporal observations is a challenge that recent work on neural fields has offered a new avenue for. However, existing methods that recover scene properties, such as geometry, app... 详细信息
来源: 评论
Local Implicit Normalizing Flow for Arbitrary-Scale Image Super-Resolution
Local Implicit Normalizing Flow for Arbitrary-Scale Image Su...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yao, Jie-En Tsao, Li-Yuan Lo, Yi-Chen Tseng, Roy Chang, Chia-Che Lee, Chun-Yi Natl Tsing Hua Univ 1 ElsaLab Hsinchu Taiwan MediaTek Inc Hsinchu Taiwan
Flow-based methods have demonstrated promising results in addressing the ill-posed nature of super-resolution (SR) by learning the distribution of high-resolution (HR) images with the normalizing flow. However, these ... 详细信息
来源: 评论
Image Dehazing Transformer with Transmission-Aware 3D Position Embedding
Image Dehazing Transformer with Transmission-Aware 3D Positi...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Guo, Chunle Yan, Qixin Anwar, Saeed Cong, Runmin Ren, Wenqi Li, Chongyi Nankai Univ TMCC CS Tianjin Peoples R China Tianjin Univ Tianjin Peoples R China Australian Natl Univ Canberra ACT Australia Beijing Jiaotong Univ Beijing Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China Nanyang Technol Univ S Lab Singapore Singapore
Despite single image dehazing has been made promising progress with Convolutional Neural Networks (CNNs), the inherent equivariance and locality of convolution still bottleneck dehazing performance. Though Transformer... 详细信息
来源: 评论
CRAVES: Controlling Robotic Arm with a vision-based Economic System  32
CRAVES: Controlling Robotic Arm with a Vision-based Economic...
收藏 引用
32nd ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zuo, Yiming Qiu, Weichao Xie, Lingxi Zhong, Fangwei Wang, Yizhou Yuille, Alan L. Tsinghua Univ Beijing Peoples R China Johns Hopkins Univ Baltimore MD 21218 USA Peking Univ Beijing Peoples R China Huawei Inc Noahs Ark Lab Shenzhen Peoples R China Peng Cheng Lab Shenzhen Guangdong Peoples R China DeepWise AI Lab Beijing Peoples R China
Training a robotic arm to accomplish real-world tasks has been attracting increasing attention in both academia and industry. This work discusses the role of computer vision algorithms in this field. We focus on low-c... 详细信息
来源: 评论
EDA: Explicit Text-Decoupling and Dense Alignment for 3D Visual Grounding
EDA: Explicit Text-Decoupling and Dense Alignment for 3D Vis...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, Yanmin Cheng, Xinhua Zhang, Renrui Cheng, Zesen Zhang, Jian Peking Univ Shenzhen Grad Sch Shenzhen Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Shanghai AI Lab Shanghai Peoples R China
3D visual grounding aims to find the object within point clouds mentioned by free-form natural language descriptions with rich semantic cues. However, existing methods either extract the sentence-level features coupli... 详细信息
来源: 评论
Scaling Up vision-Language Pre-training for Image Captioning
Scaling Up Vision-Language Pre-training for Image Captioning
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hu, Xiaowei Gan, Zhe Wang, Jianfeng Yang, Zhengyuan Liu, Zicheng Lu, Yumao Wang, Lijuan Microsoft Redmond WA 98052 USA
In recent years, we have witnessed significant performance boost in the image captioning task based on vision-language pre-training (VLP). Scale is believed to be an important factor for this advance. However, most ex... 详细信息
来源: 评论