咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,850 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是481-490 订阅
排序:
Real-World Mobile Image Denoising Dataset with Efficient Baselines
Real-World Mobile Image Denoising Dataset with Efficient Bas...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Flepp, Roman Ignatov, Andrey Timofte, Radu Van Gool, Luc Swiss Fed Inst Technol Comp Vis Lab Zurich Switzerland Univ Wurzburg Comp Vis Lab Wurzburg Germany AI Witchlabs Ltd Zollikerberg Switzerland
The recently increased role of mobile photography has raised the standards of on-device photo processing tremendously. Despite the latest advancements in camera hardware, the mobile camera sensor area cannot be increa... 详细信息
来源: 评论
The Neglected Tails in vision-Language Models
The Neglected Tails in Vision-Language Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Parashar, Shubham Lin, Zhiqiu Liu, Tian Dong, Xiangjue Li, Yanan Ramanan, Deva Caverlee, James Kong, Shu Texas A&M Univ College Stn TX 77840 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA Zhejiang Lab Hangzhou Peoples R China Univ Macau Taipa Macao Peoples R China
vision-language models (VLMs) excel in zero-shot recognition but their performance varies greatly across different visual concepts. For example, although CLIP achieves impressive accuracy on ImageNet (60-80%), its per... 详细信息
来源: 评论
SelfOcc: Self-Supervised vision-Based 3D Occupancy Prediction
SelfOcc: Self-Supervised Vision-Based 3D Occupancy Predictio...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Huang, Yuanhui Zheng, Wenzhao Zhang, Borui Zhou, Jie Lu, Jiwen Tsinghua Univ Beijing Natl Res Ctr Informat Sci & Technol Dept Automat Beijing Peoples R China
3D occupancy prediction is an important task for the robustness of vision-centric autonomous driving, which aims to predict whether each point is occupied in the surrounding 3D space. Existing methods usually require ... 详细信息
来源: 评论
Open3DSG: Open-Vocabulary 3D Scene Graphs from Point Clouds with Queryable Objects and Open-Set Relationships
Open3DSG: Open-Vocabulary 3D Scene Graphs from Point Clouds ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Koch, Sebastian Vaskevicius, Narunas Colosi, Mirco Hermosilla, Pedro Ropinski, Timo Bosch Ctr Artificial Intelligence Stuttgart Germany Robert Bosch Corp Res Stuttgart Germany Univ Ulm Ulm Germany TU Vienna Vienna Austria
Current approaches for 3D scene graph prediction rely on labeled datasets to train models for a fixed set of known object classes and relationship categories. We present Open3DSG, an alternative approach to learn 3D s... 详细信息
来源: 评论
Towards Language-Driven Video Inpainting via Multimodal Large Language Models
Towards Language-Driven Video Inpainting via Multimodal Larg...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, Jianzong Li, Xiangtai Si, Chenyang Zhou, Shangchen Yang, Jingkang Zhang, Jiangning Li, Yining Chen, Kai Tong, Yunhai Liu, Ziwei Loy, Chen Change Peking Univ Natl Key Lab Gen Artificial Intelligence Beijing Peoples R China Nanyang Technol Univ S Lab Singapore Singapore Shanghai AI Lab Shanghai Peoples R China PKU Wuhan Inst Artificial Intelligence Wuhan Peoples R China Zhejiang Univ Hangzhou Peoples R China
We introduce a new task - language-driven video inpainting, which uses natural language instructions to guide the inpainting process. This approach overcomes the limitations of traditional video inpainting methods tha... 详细信息
来源: 评论
LEOD: Label-Efficient Object Detection for Event Cameras
LEOD: Label-Efficient Object Detection for Event Cameras
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wu, Ziyi Gehrig, Mathias Lyu, Qing Liu, Xudong Gilitschenski, Igor Univ Toronto Toronto ON Canada Vector Inst Toronto ON Canada Univ Zurich Zurich Switzerland
Object detection with event cameras benefits from the sensor's low latency and high dynamic range. However, it is costly to fully label event streams for supervised training due to their high temporal resolution. ... 详细信息
来源: 评论
Seeing the Unseen: Visual Common Sense for Semantic Placement
Seeing the Unseen: Visual Common Sense for Semantic Placemen...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ramrakhya, Ram Kembhavi, Aniruddha Batra, Dhruv Kira, Zsolt Zeng, Kuo-Hao Weihs, Luca Georgia Inst Technol Atlanta GA 30332 USA PRIOR Allen Inst AI Seattle WA USA PRIOR AI2 Seattle WA USA
computer vision tasks typically involve describing what is present in an image (e.g. classification, detection, segmentation, and captioning). We study a visual common sense task that requires understanding 'what ... 详细信息
来源: 评论
WorDepth: Variational Language Prior for Monocular Depth Estimation
WorDepth: Variational Language Prior for Monocular Depth Est...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zeng, Ziyao Wang, Daniel Yang, Fengyu Park, Hyoungseob Wong, Alex Soatto, Stefano Lao, Dong Yale Univ New Haven CT 06511 USA Univ Calif Los Angeles Los Angeles CA USA
Three-dimensional (3D) reconstruction from a single image is an ill-posed problem with inherent ambiguities, i.e. scale. Predicting a 3D scene from text description(s) is similarly ill-posed, i.e. spatial arrangements... 详细信息
来源: 评论
Three Pillars improving vision Foundation Model Distillation for Lidar
Three Pillars improving Vision Foundation Model Distillation...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Puy, Gilles Gidaris, Spyros Boulch, Alexandre Simeoni, Oriane Sautier, Corentin Perez, Patrick Bursucl, Andrei Marlet, Renaud Valeo ai Paris France Kyutai Paris France Univ Gustave Eiffel CNRS LIGM Ecole Ponts Marne La Vallee France
Self-supervised image backbones can be used to address complex 2D tasks (e.g., semantic segmentation, object discovery) very efficiently and with little or no downstream supervision. Ideally, 3D backbones for lidar sh... 详细信息
来源: 评论
Teeth-SEG: An Efficient Instance Segmentation Framework for Orthodontic Treatment based on Multi-Scale Aggregation and Anthropic Prior Knowledge
Teeth-SEG: An Efficient Instance Segmentation Framework for ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zou, Bo Wang, Shaofeng Liu, Hao Sun, Gaoyue Wang, Yajie Zuo, FeiFei Quan, Chengbin Zhaot, Youjian Tsinghua Univ Beijing Peoples R China Capital Med Univ Beijing Peoples R China Imperial Coll London London England LargeV Inc Beijing Peoples R China Tsinghua Univ Zhongguancun Lab Beijing Peoples R China
Teeth localization, segmentation, and labeling in 2D images have great potential in modern dentistry to enhance dental diagnostics, treatment planning, and population-based studies on oral health. However, general ins... 详细信息
来源: 评论