咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是4931-4940 订阅
排序:
ACTION-Net: Multipath Excitation for Action recognition
ACTION-Net: Multipath Excitation for Action Recognition
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Zhengwei She, Qi Smolic, Aljosa Trinity Coll Dublin V SENSE Dublin Ireland ByteDance AI Lab Beijing Peoples R China
Spatial-temporal, channel-wise, and motion patterns are three complementary and crucial types of information for video action recognition. Conventional 2D CNNs are computationally cheap but cannot catch temporal relat... 详细信息
来源: 评论
Nearest Neighbor Matching for Deep Clustering
Nearest Neighbor Matching for Deep Clustering
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Dang, Zhiyuan Deng, Cheng Yang, Xu Wei, Kun Huang, Heng Xidian Univ Sch Elect Engn Xian 710071 Peoples R China JD Tech Beijing 100176 Peoples R China Univ Pittsburgh Dept Elect & Comp Engn Pittsburgh PA 15260 USA JD Finance Amer Corp Mountain View CA 94043 USA
Deep clustering gradually becomes an important branch in unsupervised learning methods. However, current approaches hardly take into consideration the semantic sample relationships that existed in both local and globa... 详细信息
来源: 评论
Domain Adaptation with Auxiliary Target Domain-Oriented Classifier
Domain Adaptation with Auxiliary Target Domain-Oriented Clas...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Liang, Jian Hu, Dapeng Feng, Jiashi Natl Univ Singapore NUS Singapore Singapore Sea AI Lab SAIL Singapore Singapore
Domain adaptation (DA) aims to transfer knowledge from a label-rich but heterogeneous domain to a label-scare domain, which alleviates the labeling efforts and attracts considerable attention. Different from previous ... 详细信息
来源: 评论
Animating General Image with Large Visual Motion Model
Animating General Image with Large Visual Motion Model
收藏 引用
conference on computer vision and pattern recognition (CVPR)
作者: Dengsheng Chen Xiaoming Wei Xiaolin Wei Meituan Beijing China
We present the pioneering Large Visual Motion Model (LVMM), meticulously engineered to analyze the intrinsic dynamics encapsulated within real-world imagery. Our model, fortified with a wealth of prior knowledge extra... 详细信息
来源: 评论
Frequency-aware Discriminative Feature Learning Supervised by Single-Center Loss for Face Forgery Detection
Frequency-aware Discriminative Feature Learning Supervised b...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Li, Jiaming Xie, Hongtao Li, Jiahong Wang, Zhongyuan Zhang, Yongdong Univ Sci & Technol China Hefei Peoples R China Kuaishou Technol Beijing Peoples R China
Face forgery detection is raising ever-increasing interest in computer vision since facial manipulation technologies cause serious worries. Though recent works have reached sound achievements, there are still unignora... 详细信息
来源: 评论
Learning a Non-blind Deblurring Network for Night Blurry Images
Learning a Non-blind Deblurring Network for Night Blurry Ima...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Liang Zhang, Jiawei Pan, Jinshan Lin, Songnan Fang, Faming Ren, Jimmy S. East China Normal Univ Sch Comp Sci & Technol Shanghai Key Lab Multidimens Informat Proc Shanghai Peoples R China SenseTime Res Hong Kong Peoples R China Nanjing Univ Sci & Technol Nanjing Peoples R China Shanghai Jiao Tong Univ Qing Yuan Res Inst Shanghai Peoples R China SenseTime Hong Kong Peoples R China
Deblurring night blurry images is difficult, because the common-used blur model based on the linear convolution operation does not hold in this situation due to the influence of saturated pixels. In this paper, we pro... 详细信息
来源: 评论
Understanding the Robustness of Skeleton-based Action recognition under Adversarial Attack
Understanding the Robustness of Skeleton-based Action Recogn...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, He He, Feixiang Peng, Zhexi Shao, Tianjia Yang, Yong-Liang Zhou, Kun Hogg, David Univ Leeds Leeds W Yorkshire England Zhejiang Univ State Key Lab CAD&CG Hangzhou Peoples R China Univ Bath Bath Avon England
Action recognition has been heavily employed in many applications such as autonomous vehicles, surveillance, etc, where its robustness is a primary concern. In this paper, we examine the robustness of state-of-the-art... 详细信息
来源: 评论
Multi-Objective Interpolation Training for Robustness to Label Noise
Multi-Objective Interpolation Training for Robustness to Lab...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ortego, Diego Arazo, Eric Albert, Paul O'Connor, Noel E. McGuinness, Kevin Dublin City Univ Insight Ctr Data Analyt Dublin Ireland
Deep neural networks trained with standard cross-entropy loss memorize noisy labels, which degrades their performance. Most research to mitigate this memorization proposes new robust classification loss functions. Con... 详细信息
来源: 评论
Background Splitting: Finding Rare Classes in a Sea of Background
Background Splitting: Finding Rare Classes in a Sea of Backg...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mullapudi, Ravi Teja Poms, Fait Mark, William R. Ramanan, Deva Fatahalian, Kayvon Stanford Univ Stanford CA 94305 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA Google Res Mountain View CA 94043 USA
We focus on the problem of training deep image classification models for a small number of extremely rare categories. In this common, real-world scenario, almost all images belong to the background category in the dat... 详细信息
来源: 评论
RSG: A Simple but Effective Module for Learning Imbalanced Datasets
RSG: A Simple but Effective Module for Learning Imbalanced D...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Wang, Jianfeng Lukasiewicz, Thomas Hu, Xiaolin Cai, Jianfei Xu, Zhenghua Univ Oxford Oxford England Tsinghua Univ Beijing Peoples R China Monash Univ Melbourne Vic Australia Hebei Univ Technol Tianjin Peoples R China
Imbalanced datasets widely exist in practice and are a great challenge for training deep neural models with a good generalization on infrequent classes. In this work, we propose a new rare-class sample generator (RSG)... 详细信息
来源: 评论