咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,851 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是51-60 订阅
vision-Language Pseudo-Labels for Single-Positive Multi-Label Learning
Vision-Language Pseudo-Labels for Single-Positive Multi-Labe...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xing, Xin Xiong, Zhexiao Stylianou, Abby Sastry, Srikumar Gong, Liyu Jacobs, Nathan Univ Nebraska Omaha Omaha NE 68182 USA Washington Univ St Louis St Louis MO USA St Louis Univ St Louis MO USA Oracle Inc Austin TX USA
We study a limited label problem and present a novel approach to Single-Positive Multi-label Learning. In the multi-label learning setting, a model learns to predict multiple labels or categories for a single input im... 详细信息
来源: 评论
How Much You Ate? Food Portion Estimation on Spoons
How Much You Ate? Food Portion Estimation on Spoons
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sharma, Aaryam Czarnecki, Chris Chen, Yuhao Xi, Pengcheng Xu, Linlin Wong, Alexander Univ Waterloo Vis & Image Proc Lab Waterloo ON Canada Natl Res Council Canada Ottawa ON Canada
Monitoring dietary intake is a crucial aspect of promoting healthy living. In recent years, advances in computer vision technology have facilitated dietary intake monitoring through the use of images and depth cameras... 详细信息
来源: 评论
Towards Engineered Safe AI with Modular Concept Models
Towards Engineered Safe AI with Modular Concept Models
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Heidemann, Lena Kurzidem, Iwo Monnet, Maureen Roscher, Karsten Guennemann, Stephan Fraunhofer IKS Munich Germany Tech Univ Munich Munich Germany
The inherent complexity and uncertainty of Machine Learning (ML) makes it difficult for ML-based computer vision (CV) approaches to become prevalent in safety-critical domains like autonomous driving, despite their hi... 详细信息
来源: 评论
ZInD-Tell: Towards Translating Indoor Panoramas into Descriptions
ZInD-Tell: Towards Translating Indoor Panoramas into Descrip...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Deb, Tonmoay Wang, Lichen Bessinger, Zachary Khosravan, Naji Penner, Eric Kang, Sing Bing Northwestern Univ Evanston IL 60208 USA Zillow Grp Seattle WA USA
This paper focuses on bridging the gap between natural language descriptions, 360 degrees panoramas, room shapes, and layouts/floorplans of indoor spaces. To enable new multimodal (image, geometry, language) research ... 详细信息
来源: 评论
ALINA: Advanced Line Identification and Notation Algorithm
ALINA: Advanced Line Identification and Notation Algorithm
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Khan, Mohammed Abdul Hafeez Ganeriwala, Parth Bhattacharyya, Siddhartha Neogi, Natasha Muthalagu, Raja Florida Inst Technol Melbourne FL 32901 USA NASA Langley Res Ctr Hampton VA 23665 USA BITS Pilani Dubai Campus Dubai U Arab Emirates
Labels are the cornerstone of supervised machine learning algorithms. Most visual recognition methods are fully supervised, using bounding boxes or pixel-wise segmentations for object localization. Traditional labelin... 详细信息
来源: 评论
A Perspective on Deep vision Performance with Standard Image and Video Codecs
A Perspective on Deep Vision Performance with Standard Image...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Reich, Christoph Hahn, Oliver Cremers, Daniel Roth, Stefan Debnath, Biplob Tech Univ Darmstadt Darmstadt Germany Tech Univ Munich Munich Germany NEC Labs Amer Inc San Jose CA 95110 USA Hessian Ctr AI Hessian AI Darmstadt Germany Munich Ctr Machine Learning MCML Munich Germany
Resource-constrained hardware, such as edge devices or cell phones, often rely on cloud servers to provide the required computational resources for inference in deep vision models. However, transferring image and vide... 详细信息
来源: 评论
VLM-PL: Advanced Pseudo Labeling approach for Class Incremental Object Detection via vision-Language Model
VLM-PL: Advanced Pseudo Labeling approach for Class Incremen...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kim, Junsu Ku, Yunhoe Kim, Jihyeon Cha, Junuk Baek, Seungryul UNIST Ulsan South Korea MODULABS Seoul South Korea
In the field of Class Incremental Object Detection (CIOD), creating models that can continuously learn like humans is a major challenge. Pseudo-labeling methods, although initially powerful, struggle with multi-scenar... 详细信息
来源: 评论
One Embedding to Predict Them All: Visible and Thermal Universal Face Representations for Soft Biometric Estimation via vision Transformers
One Embedding to Predict Them All: Visible and Thermal Unive...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Mirabet-Herranz, Nelida Galdi, Chiara Dugelay, Jean-Luc EURECOM Campus SophiaTech450 Route Chappes F-06410 Biot France
Human faces encode a vast amount of information including not only uniquely distinctive features of the individual but also demographic information such as a person's age, gender, and weight. Such information is r... 详细信息
来源: 评论
De-noised vision-language Fusion Guided by Visual Cues for E-commerce Product Search
De-noised Vision-language Fusion Guided by Visual Cues for E...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Hu, Zhizhang Li, Shasha Du, Ming Dhua, Arnab Gray, Douglas Univ Calif Merced Merced CA 95343 USA Amazon Visual Search & AR Seattle WA USA Amazon Seattle WA USA
In e-commerce applications, vision-language multimodal transformer models play a pivotal role in product search. The key to successfully training a multimodal model lies in the alignment quality of image-text pairs in... 详细信息
来源: 评论
VMCML: Video and Music Matching via Cross-Modality Lifting
VMCML: Video and Music Matching via Cross-Modality Lifting
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lee, Yi-Shan Tseng, Wei-Cheng Wang, Fu-En Sun, Min Natl Tsing Hua Univ Hsinchu Taiwan Univ Toronto Toronto ON Canada Vector Inst Toronto ON Canada
We propose a content-based system for matching video and background music. The system aims to address the challenges in music recommendation for new users or new music give short-form videos. To this end, we propose a... 详细信息
来源: 评论