咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,849 篇 英文
  • 9 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是621-630 订阅
排序:
DRHDR: A Dual branch Residual Network for Multi-Bracket High Dynamic Range Imaging
DRHDR: A Dual branch Residual Network for Multi-Bracket High...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Marin-Vega, Juan Sloth, Michael Schneider-Kamp, Peter Rottger, Richard Univ Southern Denmark Dept Math & Comp Sci IMADA Odense Denmark Esoft Syst Odense Denmark
We introduce DRHDR, a Dual branch Residual Convolutional Neural Network for Multi-Bracket HDR Imaging. To address the challenges of fusing multiple brackets from dynamic scenes, we propose an efficient dual branch net... 详细信息
来源: 评论
ViTs for SITS: vision Transformers for Satellite Image Time Series
ViTs for SITS: Vision Transformers for Satellite Image Time ...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Tarasiou, Michail Chavez, Erik Zafeiriou, Stefanos Imperial Coll London London England
In this paper we introduce the Temporo-Spatial vision Transformer (TSViT), a fully-attentional model for general Satellite Image Time Series (SITS) processing based on the vision Transformer (ViT). TSViT splits a SITS... 详细信息
来源: 评论
Boundary-aware Image Inpainting with Multiple Auxiliary Cues
Boundary-aware Image Inpainting with Multiple Auxiliary Cues
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Yamashita, Yohei Shimosato, Kodai Ukita, Norimichi Toyota Technol Inst Nagoya Japan
Image inpainting (a.k.a. image completion) allows us to remove unexpected foreground objects from an observed image and to restore the removed region with background pixels. The performance of image inpainting is impr... 详细信息
来源: 评论
Cyclical Pruning for Sparse Neural Networks
Cyclical Pruning for Sparse Neural Networks
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Srinivas, Suraj Kuzmin, Andrey Nagel, Markus van Baalen, Mart Skliar, Andrii Blankevoort, Tijmen Idiap Res Inst Martigny Switzerland Ecole Polytech Fed Lausanne Lausanne Switzerland Qualcomm AI Res Amsterdam Netherlands
Current methods for pruning neural network weights iteratively apply magnitude-based pruning on the model weights and re-train the resulting model to recover lost accuracy. In this work, we show that such strategies d... 详细信息
来源: 评论
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
A Deeper Look into Aleatoric and Epistemic Uncertainty Disen...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Valdenegro-Toro, Matias Mori, Daniel Saromo Univ Groningen Dept AI Bernoulli Inst Groningen Netherlands Pontifical Catholic Univ Peru Artificial Intelligence Res Grp San Miguel Peru
Neural networks are ubiquitous in many tasks, but trusting their predictions is an open issue. Uncertainty quantification is required for many applications, and disentangled aleatoric and epistemic uncertainties are b... 详细信息
来源: 评论
PAND: Precise Action recognition on Naturalistic Driving
PAND: Precise Action Recognition on Naturalistic Driving
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Zhao, Hangyue Xiao, Yuchao Zhao, Yanyun Beijing Univ Posts & Telecommun Beijing Peoples R China Beijing Key Lab Network Syst & Network Culture Beijing Peoples R China
Temporal action localization for untrimmed videos is a difficult problem in computer vision. It is challenge to infer the start and end of activity instances on small-scale datasets covering multi-view information acc... 详细信息
来源: 评论
SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection
SQUID: Deep Feature In-Painting for Unsupervised Anomaly Det...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Xiang, Tiange Zhang, Yixiao Lu, Yongyi Yuille, Alan L. Zhang, Chaoyi Cai, Weidong Zhou, Zongwei Univ Sydney Camperdown NSW Australia Johns Hopkins Univ Baltimore MD USA
Radiography imaging protocols focus on particular body regions, therefore producing images of great similarity and yielding recurrent anatomical structures across patients. To exploit this structured information, we p... 详细信息
来源: 评论
Towards efficient feature sharing in MIMO architectures
Towards efficient feature sharing in MIMO architectures
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Sun, Remy Rame, Alexandre Masson, Clement Thome, Nicolas Cord, Matthieu Sorbonne Univ MLIA ISIR Paris France Conservatoire Natl Arts & Metiers CEDRIC Vertigo Paris France Thales Land & Air Syst Elancourt France Valeo Ai Paris France
Multi-input multi-output architectures propose to train multiple subnetworks within one base network and then average the subnetwork predictions to benefit from ensembling for free. Despite some relative success, thes... 详细信息
来源: 评论
Why Object Detectors Fail: Investigating the Influence of the Dataset
Why Object Detectors Fail: Investigating the Influence of th...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Miller, Dimity Goode, Georgia Bennie, Callum Moghadam, Peyman Jurdak, Raja Queensland Univ Technol Brisbane Qld Australia CSIRO Data61 Robot & Autonomous Syst Melbourne Vic Australia
A false negative in object detection describes an object that was not correctly localised and classified by a detector. In prior work, we introduced five 'false negative mechanisms' that identify the specific ... 详细信息
来源: 评论
vision Transformers Are Good Mask Auto-Labelers
Vision Transformers Are Good Mask Auto-Labelers
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Lan, Shiyi Yang, Xitong Yu, Zhiding Wu, Zuxuan Alvarez, Jose M. Anandkumar, Anima NVIDIA Santa Clara CA 95051 USA Meta AI FAIR London England Fudan Univ Shanghai Peoples R China CALTECH Pasadena CA USA
We propose Mask Auto-Labeler (MAL), a high-quality Transformer-based mask auto-labeling framework for instance segmentation using only box annotations. MAL takes box-cropped images as inputs and conditionally generate... 详细信息
来源: 评论