咨询与建议

限定检索结果

文献类型

  • 12,844 篇 会议
  • 13 篇 期刊文献
  • 2 册 图书

馆藏范围

  • 12,859 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,573 篇 工学
    • 6,863 篇 计算机科学与技术...
    • 880 篇 机械工程
    • 814 篇 软件工程
    • 435 篇 控制科学与工程
    • 360 篇 光学工程
    • 306 篇 电气工程
    • 209 篇 仪器科学与技术
    • 124 篇 信息与通信工程
    • 91 篇 生物工程
    • 62 篇 生物医学工程(可授...
    • 39 篇 电子科学与技术(可...
    • 34 篇 安全科学与工程
    • 26 篇 化学工程与技术
    • 21 篇 交通运输工程
    • 20 篇 建筑学
    • 18 篇 土木工程
  • 2,957 篇 医学
    • 2,956 篇 临床医学
    • 15 篇 基础医学(可授医学...
    • 12 篇 药学(可授医学、理...
  • 700 篇 理学
    • 359 篇 物理学
    • 225 篇 数学
    • 175 篇 系统科学
    • 95 篇 统计学(可授理学、...
    • 93 篇 生物学
    • 22 篇 化学
  • 201 篇 艺术学
    • 201 篇 设计学(可授艺术学...
  • 84 篇 管理学
    • 59 篇 图书情报与档案管...
    • 25 篇 管理科学与工程(可...
    • 14 篇 工商管理
  • 23 篇 法学
    • 21 篇 社会学
  • 5 篇 农学
  • 4 篇 教育学
  • 2 篇 经济学
  • 1 篇 军事学

主题

  • 6,464 篇 computer vision
  • 2,688 篇 training
  • 2,437 篇 pattern recognit...
  • 1,780 篇 computational mo...
  • 1,522 篇 visualization
  • 1,348 篇 three-dimensiona...
  • 1,091 篇 computer archite...
  • 1,063 篇 semantics
  • 997 篇 benchmark testin...
  • 976 篇 codes
  • 970 篇 conferences
  • 854 篇 feature extracti...
  • 830 篇 cameras
  • 771 篇 task analysis
  • 707 篇 deep learning
  • 646 篇 image segmentati...
  • 611 篇 object detection
  • 595 篇 shape
  • 554 篇 transformers
  • 538 篇 neural networks

机构

  • 132 篇 univ sci & techn...
  • 122 篇 carnegie mellon ...
  • 120 篇 tsinghua univ pe...
  • 114 篇 univ chinese aca...
  • 113 篇 chinese univ hon...
  • 94 篇 tsinghua univers...
  • 91 篇 zhejiang univ pe...
  • 91 篇 swiss fed inst t...
  • 85 篇 peng cheng lab p...
  • 81 篇 university of ch...
  • 80 篇 zhejiang univers...
  • 77 篇 shanghai ai lab ...
  • 77 篇 peng cheng labor...
  • 75 篇 university of sc...
  • 69 篇 shanghai jiao to...
  • 68 篇 shanghai jiao to...
  • 67 篇 alibaba grp peop...
  • 67 篇 stanford univ st...
  • 66 篇 univ hong kong p...
  • 64 篇 sensetime res pe...

作者

  • 77 篇 timofte radu
  • 63 篇 van gool luc
  • 45 篇 zhang lei
  • 36 篇 yang yi
  • 36 篇 luc van gool
  • 34 篇 tao dacheng
  • 31 篇 loy chen change
  • 29 篇 chen chen
  • 28 篇 sun jian
  • 28 篇 qi tian
  • 25 篇 li xin
  • 24 篇 liu yang
  • 24 篇 tian qi
  • 24 篇 ying shan
  • 23 篇 wang xinchao
  • 23 篇 zha zheng-jun
  • 23 篇 boxin shi
  • 21 篇 zhou jie
  • 21 篇 vasconcelos nuno
  • 20 篇 luo ping

语言

  • 12,850 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"任意字段=IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops"
12859 条 记 录,以下是691-700 订阅
排序:
Fresnel Microfacet BRDF: Unification of Polari-Radiometric Surface-Body Reflection
Fresnel Microfacet BRDF: Unification of Polari-Radiometric S...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ichikawa, Tomoki Fukao, Yoshiki Nobuhara, Shohei Nishino, Ko Kyoto Univ Grad Sch Informat Kyoto Japan
computer vision applications have heavily relied on the linear combination of Lambertian diffuse and microfacet specular reflection models for representing reflected radiance, which turns out to be physically incompat... 详细信息
来源: 评论
CoRe: Color Regression for Multicolor Fashion Garments
CoRe: Color Regression for Multicolor Fashion Garments
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Rame, Alexandre Douillard, Arthur Ollion, Charles Sorbonne Univ Paris France Heuritech Paris France
Developing deep networks that analyze fashion garments has many real-world applications. Among all fashion attributes, color is one of the most important yet challenging to detect. Existing approaches are classificati... 详细信息
来源: 评论
On the Effect of Atmospheric Turbulence in the Feature Space of Deep Face recognition
On the Effect of Atmospheric Turbulence in the Feature Space...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Robbins, Wes Boult, Terrance Univ Colorado Colorado Springs CO 80907 USA
When captured over long distances, image quality is degraded by inconsistent refractive indexes in the atmosphere. This effect, known as Atmospheric Turbulence (AT), leads to lower performance for vision-based biometr... 详细信息
来源: 评论
Seeing Beyond the Brain: Conditional Diffusion Model with Sparse Masked Modeling for vision Decoding
Seeing Beyond the Brain: Conditional Diffusion Model with Sp...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Chen, Zijiao Qing, Jiaxin Xiang, Tiange Yue, Wan Lin Zhou, Juan Helen Natl Univ Singapore Singapore Singapore Chinese Univ Hong Kong Hong Kong Peoples R China Stanford Univ Stanford CA USA
Decoding visual stimuli from brain recordings aims to deepen our understanding of the human visual system and build a solid foundation for bridging human and computer vision through the Brain-computer Interface. Howev... 详细信息
来源: 评论
Out-Of-Distribution Detection In Unsupervised Continual Learning
Out-Of-Distribution Detection In Unsupervised Continual Lear...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: He, Jiangpeng Zhu, Fengqing Purdue Univ Elmore Family Sch Elect & Comp Engn W Lafayette IN 47907 USA
Unsupervised continual learning aims to learn new tasks incrementally without requiring human annotations. However, most existing methods, especially those targeted on image classification, only work in a simplified s... 详细信息
来源: 评论
Uni-NLX: Unifying Textual Explanations for vision and vision-Language Tasks
Uni-NLX: Unifying Textual Explanations for Vision and Vision...
收藏 引用
ieee/cvf International conference on computer vision (ICCV)
作者: Sammani, Fawaz Deligiannis, Nikos Vrije Univ Brussel ETRO Dept Pl Laan 2 B-1050 Brussels Belgium IMEC Kapeldreef 75 B-3001 Leuven Belgium
Natural Language Explanations (NLE) aim at supplementing the prediction of a model with human-friendly natural text. Existing NLE approaches involve training separate models for each downstream task. In this work, we ...
来源: 评论
Model Level Ensemble for Facial Action Unit recognition at the 3rd ABAW Challenge
Model Level Ensemble for Facial Action Unit Recognition at t...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Jiang, Wenqiang Wu, Yannan Qiao, Fengsheng Meng, Liyu Deng, Yuanyuan Liu, Chuanhe Beijing Seek Truth Data Technol Co Ltd Beijing Peoples R China
In this paper, we present our latest work on Action Unit Detection, which is a part of the Affective Behavior Analysis in-the-wild (ABAW) 2022 Competition [15]. Our proposed network is based on the IResnet100 [6]. Fir... 详细信息
来源: 评论
Attenuating Catastrophic Forgetting by Joint Contrastive and Incremental Learning
Attenuating Catastrophic Forgetting by Joint Contrastive and...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Ferdinand, Quentin Clement, Benoit Oliveau, Quentin Le Chenadec, Gilles Papadakis, Panagiotis Naval Grp Res Cherbourg En Cotentin France ENSTA Bretagne Lab STICC UMR 6285 Brest France IMT Atlantique Lab STICC UMR 6285 Brest France
In class incremental learning, discriminative models are trained to classify images while adapting to new instances and classes incrementally. Training a model to adapt to new classes without total access to previous ... 详细信息
来源: 评论
Disentangled Loss for Low-Bit Quantization-Aware Training
Disentangled Loss for Low-Bit Quantization-Aware Training
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Allenet, Thibault Briand, David Bichler, Olivier Sentieys, Olivier CEA LIST Saclay France Univ Rennes INRIA Rennes France
Quantization-Aware Training (QAT) has recently showed a lot of potential for low-bit settings in the context of image classification. Approaches based on QAT are using the Cross Entropy Loss function which is the refe... 详细信息
来源: 评论
Grounding Counterfactual Explanation of Image Classifiers to Textual Concept Space
Grounding Counterfactual Explanation of Image Classifiers to...
收藏 引用
ieee/cvf conference on computer vision and pattern recognition (CVPR)
作者: Kim, Siwon Oh, Jinoh Lee, Sungjin Yu, Seunghak Doe, Jaeyoung Taghavi, Tara Seoul Natl Univ Data Sci & Artificial Intelligence Lab Seoul South Korea Amazon Alexa AI Seattle WA USA NAVER Search US Seongnam South Korea
Concept-based explanation aims to provide concise and human-understandable explanations of an image classifier. However, existing concept-based explanation methods typically require a significant amount of manually co... 详细信息
来源: 评论