咨询与建议

限定检索结果

文献类型

  • 471 篇 会议
  • 253 篇 期刊文献

馆藏范围

  • 724 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 565 篇 工学
    • 505 篇 计算机科学与技术...
    • 467 篇 软件工程
    • 165 篇 光学工程
    • 50 篇 生物医学工程(可授...
    • 43 篇 生物工程
    • 40 篇 电气工程
    • 37 篇 信息与通信工程
    • 25 篇 控制科学与工程
    • 22 篇 材料科学与工程(可...
    • 19 篇 仪器科学与技术
    • 12 篇 建筑学
    • 10 篇 电子科学与技术(可...
    • 10 篇 航空宇航科学与技...
    • 7 篇 土木工程
    • 5 篇 力学(可授工学、理...
    • 5 篇 机械工程
    • 4 篇 轻工技术与工程
    • 3 篇 冶金工程
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
  • 263 篇 理学
    • 176 篇 物理学
    • 140 篇 数学
    • 42 篇 生物学
    • 31 篇 统计学(可授理学、...
    • 2 篇 地球物理学
  • 12 篇 管理学
    • 8 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
  • 4 篇 医学
    • 4 篇 临床医学
  • 2 篇 农学
    • 2 篇 作物学
  • 2 篇 军事学

主题

  • 336 篇 image processing
  • 217 篇 pattern recognit...
  • 62 篇 pattern recognit...
  • 6 篇 satellites
  • 6 篇 computer vision
  • 5 篇 computer graphic...
  • 5 篇 imaging techniqu...
  • 5 篇 remote sensing
  • 4 篇 data processing
  • 4 篇 biomedical engin...
  • 4 篇 robots
  • 4 篇 image coding
  • 4 篇 computer program...
  • 4 篇 systems science ...
  • 4 篇 vision
  • 4 篇 image reconstruc...
  • 3 篇 computational mo...
  • 3 篇 automata theory
  • 2 篇 learning systems
  • 2 篇 noise reduction

机构

  • 8 篇 artificial intel...
  • 7 篇 univ of michigan...
  • 6 篇 univ of southern...
  • 5 篇 harvard univ cam...
  • 5 篇 univ of maryland...
  • 4 篇 univ chinese aca...
  • 4 篇 chinese acad sci...
  • 4 篇 peng cheng lab p...
  • 4 篇 columbia univ ny
  • 3 篇 univ sci & techn...
  • 3 篇 michigan state u...
  • 3 篇 state univ of ne...
  • 3 篇 univ of illinois...
  • 3 篇 new york univ ny
  • 2 篇 univ of massachu...
  • 2 篇 comput & inf sci...
  • 2 篇 inria le chesnay
  • 2 篇 hebrew univ of j...
  • 2 篇 mit cambridge ma
  • 2 篇 dept of comput s...

作者

  • 13 篇 anon
  • 11 篇 haralick robert ...
  • 11 篇 fu k.s.
  • 8 篇 pavlidis theodos...
  • 8 篇 shapiro stephen ...
  • 7 篇 rosenfeld azriel
  • 7 篇 huang thomas s.
  • 7 篇 hall ernest l.
  • 6 篇 mitchell o.r.
  • 6 篇 hall e.l.
  • 6 篇 jain anil k.
  • 6 篇 schunck brian g.
  • 6 篇 toussaint godfri...
  • 6 篇 sklansky j.
  • 5 篇 peleg shmuel
  • 5 篇 davis larry s.
  • 5 篇 chien y.t.
  • 5 篇 shapiro linda g.
  • 5 篇 srihari sargur n...
  • 5 篇 oosterlinck a.

语言

  • 470 篇 英文
  • 254 篇 其他
检索条件"任意字段=IEEE Comput Soc Conf on Pattern Recognition and Image Process, Proc"
724 条 记 录,以下是1-10 订阅
排序:
Orthogonal Transform-Driven Data Augmentation for Limited Gaussian-Tainted Dataset
收藏 引用
ieee ACCESS 2024年 12卷 127272-127282页
作者: Won Yoon, Jung Jun Yook, Hyun Min Hong, Pyo Kyu Lee, Youn Kim, Tae Hyung Hongik Univ Dept Comp Engn Seoul 04066 South Korea
A large amount of data collected from sensors exhibits Gaussian noise characteristics, making denoising and related processing critical. However, data scarcity can lead to overfitting, posing challenges in training de... 详细信息
来源: 评论
Decoupling-and-Aggregating for image Exposure Correction
Decoupling-and-Aggregating for Image Exposure Correction
收藏 引用
ieee/CVF conference on computer Vision and pattern recognition (CVPR)
作者: Wang, Yang Peng, Long Li, Liang Cao, Yang Zha, Zheng-Jun Univ Sci & Technol China Hefei Peoples R China Chinese Acad Sci Inst Comput Tech Key Lab Intell Info Proc Beijing Peoples R China
The images captured under improper exposure conditions often suffer from contrast degradation and detail distortion. Contrast degradation will destroy the statistical properties of low-frequency components, while deta... 详细信息
来源: 评论
Attribute Group Editing for Reliable Few-shot image Generation
Attribute Group Editing for Reliable Few-shot Image Generati...
收藏 引用
ieee/CVF conference on computer Vision and pattern recognition (CVPR)
作者: Ding, Guanqi Han, Xinzhe Wang, Shuhui Wu, Shuzhe Jin, Xin Tu, Dandan Huang, Qingming Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Key Lab Intell Info Proc Inst Comput Tech Beijing Peoples R China Huawei Cloud EI Innovat Lab Shanghai Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Few-shot image generation is a challenging task even using the state-of-the-art Generative Adversarial Networks (GANs). Due to the unstable GAN training process and the limited training data, the generated images are ... 详细信息
来源: 评论
DeeCap: Dynamic Early Exiting for Efficient image Captioning
DeeCap: Dynamic Early Exiting for Efficient Image Captioning
收藏 引用
ieee/CVF conference on computer Vision and pattern recognition (CVPR)
作者: Fei, Zhengcong Yan, Xu Wang, Shuhui Tian, Qi Chinese Acad Sci Inst Comput Tech Key Lab Intell Info Proc Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China Huawei Cloud & AI Beijing Peoples R China
Both accuracy and efficiency are crucial for image captioning in real-world scenarios. Although Transformerbased models have gained significant improved captioning performance, their computational cost is very high. A... 详细信息
来源: 评论
Few Shot Generative Model Adaption via Relaxed Spatial Structural Alignment
Few Shot Generative Model Adaption via Relaxed Spatial Struc...
收藏 引用
ieee/CVF conference on computer Vision and pattern recognition (CVPR)
作者: Xiao, Jiayu Li, Liang Wang, Chaofei Zha, Zheng-Jun Huang, Qingming Chinese Acad Sci Inst Comput Tech Key Lab Intell Info Proc Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Tsinghua Univ Dept Automat Beijing Peoples R China Univ Sci & Technol China Hefei Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Training a generative adversarial network (GAN) with limited data has been a challenging task A feasible solution is to start with a GAN well-trained on a large scale source domain and adapt it to the target domain wi... 详细信息
来源: 评论
Automatic recognition of Learning Resource Category in a Digital Library  21
Automatic Recognition of Learning Resource Category in a Dig...
收藏 引用
21st ACM/ieee Joint conference on Digital Libraries (JCDL)
作者: Banerjee, Soumya Sanyal, Debarshi Kumar Chattopadhyay, Samiran Bhowmick, Plaban Kumar Das, Partha Pratim IIT Kharagpur Kharagpur 721302 W Bengal India Indian Assoc Cultivat Sci Kolkata 700032 India Jadavpur Univ Kolkata 700106 India
Digital libraries generally need to process a large volume of diverse document types. The collection and tagging of metadata is a long, error-prone, workforce-consuming task. We are attempting to build an automatic me... 详细信息
来源: 评论
State-Relabeling Adversarial Active Learning
State-Relabeling Adversarial Active Learning
收藏 引用
ieee/CVF conference on computer Vision and pattern recognition (CVPR)
作者: Zhang, Beichen Li, Liang Yang, Shijie Wang, Shuhui Zha, Zheng-Jun Huang, Qingming Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Inst Comput Tech Key Lab Intell Info Proc Beijing Peoples R China Univ Sci & Technol China Hefei Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Active learning is to design label-efficient algorithms by sampling the most representative samples to be labeled by an oracle. In this paper, we propose a state relabeling adversarial active learning model (SRAAL), t... 详细信息
来源: 评论
Multiple Kernel Collaborative Representation Based Classification  13
Multiple Kernel Collaborative Representation Based Classific...
收藏 引用
13th ieee International conference on Signal processing (ICSP)
作者: Li, Ru Zhang, Qian Gao, Zhiming Liu, Bao-Di Wang, Yanjiang China Univ Petr East China Coll Informat & Control Engn Qingdao Peoples R China Univ Elect Sci & Technol China Sch Elect Engn Chengdu Sichuan Peoples R China
At present, collaborative representation based classification (CRC) is widely used in many pattern classification and recognition tasks. Meanwhile, spatial pyramid matching (SPM) method, which considers the spatial in... 详细信息
来源: 评论
Foreword
Proceedings of the 2016 International Conference on Image Pr...
收藏 引用
proceedings of the 2016 International conference on image processing, computer Vision, and pattern recognition, IPCV 2016 2016年
作者: Abd-Wahab, Mohd Helmy Al-Bakry, Abbas Al-Holou, Nizar Arabnia, Hamid R. Bhattacharya, Mahua Martinez Castillo, Juan Jose Daimi, Kevin Deligiannidis, Leonidas Djoudi, Lamia Atma Duong, Trung Eshaghian-Wilner, Mary Mehrnoosh Gravvanis, George A. Huang, Ruizhu Jandieri, George Kim, Byung-Gyu Kim, Tai-hoon Korovin, Iakov Lai, Guoming Lee, Hyo Jong Bin Mansor, Muhammad Naufal Marsh, Andrew Mostafaeipour, Ali Park, James J. Patil, Shashikant Ponalagusamy, R. Schaefer, Gerald Singh, Akash Solo, Ashu M.G. Swee, Sim Kok Thomas, Jaya Tinetti, Fernando G. Vladimir, Hahanov Wang, Shiuh-Jeng Yang, Mary Yoe, Hyun You, Jane Zhao, Wenbing Department of Computer Engineering University Tun Hussein Onn Malaysia Malaysia University of IT and Communications Baghdad Iraq Electrical and Computer Engineering Department IEEE/SEM-Computer Chapter University of Detroit Mercy DetroitMI United States University of Georgia United States ABV Indian Institute of Information Technology and Management MHRD Government of India India Acantelys Alan Turing Nikola Tesla Research Group and GIPEB Universidad Nacional Abierta Venezuela Computer Science and Software Engineering Programs Department of Mathematics Computer Science and Software Engineering University of Detroit Mercy DetroitMI United States Department of Computer Information Systems Wentworth Institute of Technology BostonMA United States Synchrone Technologies France Rutgers University State University of New Jersey New Jersey United States University of Southern California California United States Electrical Engineering University of California Los Angeles Los Angeles [UCLA CA United States Advanced Scientific Computing Applied Math and Applications Research Group Applied Mathematics and Numerical Computing and Department of ECE School of Engineering Democritus University of Thrace Xanthi Greece Texas Advanced Computing Center University of Texas AustinTX United States Georgian Technical University Tbilisi Georgia Institute of Cybernetics Georgian Academy of Science Georgia Multimedia Processing CommunicationsLab.[MPCL Department of Computer Science and Engineering College of Engineering SunMoon University Korea Republic of School of Information and Computing Science University of Tasmania Australia Southern Federal University Russia Computer Science and Technology Sun Yat-Sen University Guangzhou China Center for Advanced Image and Information Technology Division of Computer Science and Engineering Chonbuk National University Korea Republic of Faculty of Engineering Technology Kampus Uniciti Alam Universiti Malaysia Perlis UniMAP Malaysi
来源: 评论
STATISTICAL pattern recognition FOR REAL-TIME image EDGE DETECTION ON FPGA  12
STATISTICAL PATTERN RECOGNITION FOR REAL-TIME IMAGE EDGE DET...
收藏 引用
12th ieee International conference on Signal processing (ICSP)
作者: Liu, Ziyan Qi, Jia Feng, Liang Feng, Li Guizhou Univ Coll Elect & Informat Guiyang 550025 Peoples R China State Grid Chongqing Elect Power Co Chongqing 400014 Peoples R China
image edge detection is a fundamental process in computer vision. image edges represent the major fraction of information in an image. Traditional edge-detection techniques focus on the gradient calculation method. In... 详细信息
来源: 评论