咨询与建议

限定检索结果

文献类型

  • 8,902 篇 会议
  • 43 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 8,962 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,560 篇 工学
    • 4,020 篇 计算机科学与技术...
    • 2,178 篇 软件工程
    • 1,241 篇 光学工程
    • 555 篇 控制科学与工程
    • 431 篇 信息与通信工程
    • 430 篇 机械工程
    • 294 篇 电气工程
    • 287 篇 仪器科学与技术
    • 179 篇 生物工程
    • 159 篇 生物医学工程(可授...
    • 119 篇 电子科学与技术(可...
    • 61 篇 安全科学与工程
    • 58 篇 建筑学
    • 58 篇 化学工程与技术
    • 52 篇 土木工程
    • 49 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 2,065 篇 理学
    • 1,382 篇 物理学
    • 1,198 篇 数学
    • 420 篇 统计学(可授理学、...
    • 238 篇 生物学
    • 54 篇 化学
    • 36 篇 系统科学
  • 263 篇 管理学
    • 180 篇 图书情报与档案管...
    • 89 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 223 篇 医学
    • 222 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 205 篇 艺术学
    • 205 篇 设计学(可授艺术学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 9 篇 经济学
  • 6 篇 军事学

主题

  • 3,413 篇 computer vision
  • 1,216 篇 pattern recognit...
  • 946 篇 cameras
  • 908 篇 conferences
  • 765 篇 computer science
  • 674 篇 image segmentati...
  • 618 篇 layout
  • 598 篇 training
  • 548 篇 shape
  • 518 篇 robustness
  • 451 篇 feature extracti...
  • 448 篇 humans
  • 445 篇 face recognition
  • 405 篇 computational mo...
  • 402 篇 object detection
  • 365 篇 visualization
  • 356 篇 computer archite...
  • 336 篇 application soft...
  • 304 篇 lighting
  • 258 篇 image reconstruc...

机构

  • 41 篇 microsoft resear...
  • 30 篇 department of co...
  • 25 篇 department of co...
  • 23 篇 institute for co...
  • 22 篇 department of co...
  • 22 篇 school of comput...
  • 20 篇 university of sc...
  • 20 篇 swiss fed inst t...
  • 19 篇 tsinghua univers...
  • 19 篇 institute of com...
  • 18 篇 swiss fed inst t...
  • 17 篇 the robotics ins...
  • 17 篇 carnegie mellon ...
  • 17 篇 computer vision ...
  • 17 篇 department of co...
  • 16 篇 institute of inf...
  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 15 篇 carnegie mellon ...
  • 14 篇 national laborat...

作者

  • 57 篇 timofte radu
  • 25 篇 huang thomas s.
  • 24 篇 van gool luc
  • 23 篇 s.k. nayar
  • 22 篇 nayar shree k.
  • 22 篇 t. kanade
  • 21 篇 jain anil k.
  • 20 篇 luc van gool
  • 19 篇 t.s. huang
  • 18 篇 xiaoou tang
  • 18 篇 murino vittorio
  • 18 篇 horst bischof
  • 17 篇 a.k. jain
  • 17 篇 t. darrell
  • 16 篇 g. healey
  • 16 篇 bowyer kevin w.
  • 16 篇 bischof horst
  • 15 篇 m.j. black
  • 15 篇 li stan z.
  • 15 篇 m. shah

语言

  • 8,932 篇 英文
  • 22 篇 其他
  • 8 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops"
8963 条 记 录,以下是1041-1050 订阅
排序:
"BNN - BN = ?": Training Binary Neural Networks without Batch Normalization
"BNN - BN = ?": Training Binary Neural Networks without Batc...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Tianlong Zhang, Zhenyu Ouyang, Xu Liu, Zechun Shen, Zhiqiang Wang, Zhangyang Univ Texas Austin Austin TX 78712 USA Univ Sci & Technol China Hefei Anhui Peoples R China Cornell Univ Ithaca NY 14853 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA
Batch normalization (BN) is a key facilitator and considered essential for state-of-the-art binary neural networks (BNN). However, the BN layer is costly to calculate and is typically implemented with non-binary param... 详细信息
来源: 评论
IB-DRR - Incremental Learning with Information-Back Discrete Representation Replay
IB-DRR - Incremental Learning with Information-Back Discrete...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Jiang, Jian Cetin, Edoardo Celiktutan, Oya Kings Coll London Ctr Robot Res Dept Engn London England
Incremental learning aims to enable machine learning models to continuously acquire new knowledge given new classes, while maintaining the knowledge already learned for old classes. Saving a subset of training samples... 详细信息
来源: 评论
CroSpace6D: Leveraging Geometric and Motion Cues for High-Precision Cross-Domain 6DoF Pose Estimation for Non-Cooperative Spacecrafts
CroSpace6D: Leveraging Geometric and Motion Cues for High-Pr...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Jianhong Zuo Shengyang Zhang Qianyu Zhang Yutao Zhao Baichuan Liu Aodi Wu Xue Wan Leizheng Shu Guohua Kang Nanjing University of Aeronautics and Astronautics Chinese Academy of Sciences Technology and Engineering Center for Space Utilization University of Chinese Academy of Sciences
The utilization of monocular vision for non-cooperative spacecraft pose estimation has been significantly researched in space target monitoring, on-orbit servicing, and satellite maintenance. The challenge lies in add... 详细信息
来源: 评论
Superpixels and Graph Convolutional Neural Networks for Efficient Detection of Nutrient Deficiency Stress from Aerial Imagery
Superpixels and Graph Convolutional Neural Networks for Effi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Dadsetan, Saba Pichler, David Wilson, David Hovakimyan, Naira Hobbs, Jennifer Univ Pittsburgh Pittsburgh PA 15260 USA Intelinair Inc San Francisco CA USA Univ Illinois Urbana IL USA
Advances in remote sensing technology have led to the capture of massive amounts of data. Increased image resolution, more frequent revisit times, and additional spectral channels have created an explosion in the amou... 详细信息
来源: 评论
Semi-synthesis: A fast way to produce effective datasets for stereo matching
Semi-synthesis: A fast way to produce effective datasets for...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: He, Ju Zhou, Enyu Sun, Liusheng Lei, Fei Liu, Chenyang Sun, Wenxiu Johns Hopkins Univ Baltimore MD 21218 USA SenseTime Res Hong Kong Peoples R China
Stereo matching is an important problem in computer vision which has drawn tremendous research attention for decades. Recent years, data-driven methods with convolutional neural networks (CNNs) are continuously pushin... 详细信息
来源: 评论
A Tale of Two CILs: The Connections between Class Incremental Learning and Class Imbalanced Learning, and Beyond
A Tale of Two CILs: The Connections between Class Incrementa...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: He, Chen Wang, Ruiping Chen, Xilin Chinese Acad Sci Inst Comp Technol Key Lab Intelligent Informat Proc CAS Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
Catastrophic forgetting, the main challenge of Class Incremental Learning, is closely related to the classifier's bias due to imbalanced data, and most researchers resort to empirical techniques to remove the bias... 详细信息
来源: 评论
IQMA Network: Image Quality Multi-scale Assessment Network
IQMA Network: Image Quality Multi-scale Assessment Network
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Guo, Haiyang Bin, Yi Hou, Yuqing Zhang, Qing Luo, Hengliang Meituan Beijing Peoples R China
Image Quality Assessment (IQA), which aims to provide computational models for automatically predicting perceptual image quality, is an important computer vision task with many applications. In recent years, a variety... 详细信息
来源: 评论
CycleGANAS: Differentiable Neural Architecture Search for CycleGAN
CycleGANAS: Differentiable Neural Architecture Search for Cy...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Taegun An Changhee Joo Department of Computer Science and Engineering Korea University
We develop a Neural Architecture Search (NAS) framework for CycleGAN that carries out unpaired image-to-image translation task. Extending previous NAS techniques for Generative Adversarial Networks (GANs) to CycleGAN ... 详细信息
来源: 评论
Hierarchical NeuroSymbolic Approach for Comprehensive and Explainable Action Quality Assessment
Hierarchical NeuroSymbolic Approach for Comprehensive and Ex...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Lauren Okamoto Paritosh Parmar Princeton University IHPC A*STAR Singapore
Action quality assessment (AQA) applies computer vision to quantitatively assess the performance or execution of a human action. Current AQA approaches are end-to-end neural models, which lack transparency and tend to... 详细信息
来源: 评论
Class-Incremental Learning with Generative Classifiers
Class-Incremental Learning with Generative Classifiers
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: van de Ven, Gido M. Li, Zhe Tolias, Andreas S. Baylor Coll Med Ctr Neurosci & Artificial Intelligence Houston TX 77030 USA Univ Cambridge Computat & Biol Learning Lab Cambridge England Rice Univ Dept Elect & Comp Engn POB 1892 Houston TX 77251 USA
Incrementally training deep neural networks to recognize new classes is a challenging problem. Most existing class-incremental learning methods store data or use generative replay, both of which have drawbacks, while ... 详细信息
来源: 评论