咨询与建议

限定检索结果

文献类型

  • 8,905 篇 会议
  • 43 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 8,965 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,564 篇 工学
    • 4,024 篇 计算机科学与技术...
    • 2,182 篇 软件工程
    • 1,241 篇 光学工程
    • 558 篇 控制科学与工程
    • 433 篇 信息与通信工程
    • 430 篇 机械工程
    • 294 篇 电气工程
    • 288 篇 仪器科学与技术
    • 179 篇 生物工程
    • 159 篇 生物医学工程(可授...
    • 119 篇 电子科学与技术(可...
    • 64 篇 安全科学与工程
    • 58 篇 建筑学
    • 58 篇 化学工程与技术
    • 52 篇 土木工程
    • 52 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 2,066 篇 理学
    • 1,382 篇 物理学
    • 1,198 篇 数学
    • 420 篇 统计学(可授理学、...
    • 238 篇 生物学
    • 55 篇 化学
    • 36 篇 系统科学
  • 266 篇 管理学
    • 182 篇 图书情报与档案管...
    • 92 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 223 篇 医学
    • 222 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 205 篇 艺术学
    • 205 篇 设计学(可授艺术学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 9 篇 经济学
  • 6 篇 军事学

主题

  • 3,414 篇 computer vision
  • 1,216 篇 pattern recognit...
  • 946 篇 cameras
  • 908 篇 conferences
  • 765 篇 computer science
  • 674 篇 image segmentati...
  • 618 篇 layout
  • 598 篇 training
  • 548 篇 shape
  • 518 篇 robustness
  • 451 篇 feature extracti...
  • 448 篇 humans
  • 445 篇 face recognition
  • 405 篇 computational mo...
  • 402 篇 object detection
  • 365 篇 visualization
  • 356 篇 computer archite...
  • 336 篇 application soft...
  • 304 篇 lighting
  • 257 篇 image reconstruc...

机构

  • 41 篇 microsoft resear...
  • 30 篇 department of co...
  • 25 篇 department of co...
  • 23 篇 institute for co...
  • 22 篇 department of co...
  • 22 篇 school of comput...
  • 20 篇 university of sc...
  • 20 篇 swiss fed inst t...
  • 19 篇 tsinghua univers...
  • 19 篇 institute of com...
  • 18 篇 swiss fed inst t...
  • 17 篇 the robotics ins...
  • 17 篇 carnegie mellon ...
  • 17 篇 computer vision ...
  • 17 篇 department of co...
  • 16 篇 institute of inf...
  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 15 篇 carnegie mellon ...
  • 14 篇 national laborat...

作者

  • 57 篇 timofte radu
  • 25 篇 huang thomas s.
  • 24 篇 van gool luc
  • 23 篇 s.k. nayar
  • 22 篇 nayar shree k.
  • 22 篇 t. kanade
  • 21 篇 jain anil k.
  • 20 篇 luc van gool
  • 19 篇 t.s. huang
  • 18 篇 xiaoou tang
  • 18 篇 murino vittorio
  • 18 篇 horst bischof
  • 17 篇 a.k. jain
  • 17 篇 t. darrell
  • 16 篇 g. healey
  • 16 篇 bowyer kevin w.
  • 16 篇 bischof horst
  • 15 篇 m.j. black
  • 15 篇 li stan z.
  • 15 篇 m. shah

语言

  • 8,904 篇 英文
  • 53 篇 其他
  • 8 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops"
8966 条 记 录,以下是1531-1540 订阅
排序:
i-MAE: Are Latent Representations in Masked Autoencoders Linearly Separable?
i-MAE: Are Latent Representations in Masked Autoencoders Lin...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Kevin Zhang Zhiqiang Shen Peking University KNQ.AI Mohamed bin Zayed University of AI
Masked image modeling (MIM) has been recognized as a strong self-supervised pre-training approach in the vision domain. However, the mechanism and properties of the learned representations by such a scheme, as well as... 详细信息
来源: 评论
SAM-CLIP: Merging vision Foundation Models towards Semantic and Spatial Understanding
SAM-CLIP: Merging Vision Foundation Models towards Semantic ...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Haoxiang Wang Pavan Kumar Anasosalu Vasu Fartash Faghri Raviteja Vemulapalli Mehrdad Farajtabar Sachin Mehta Mohammad Rastegari Oncel Tuzel Hadi Pouransari University of Illinois Urbana-Champaign Apple
The landscape of publicly available vision foundation models (VFMs), such as CLIP and Segment Anything Model (SAM), is expanding rapidly. VFMs are endowed with distinct capabilities stemming from their pre-training ob... 详细信息
来源: 评论
Evaluating Multimodal Large Language Models across Distribution Shifts and Augmentations
Evaluating Multimodal Large Language Models across Distribut...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Aayush Atul Verma Amir Saeidi Shamanthak Hegde Ajay Therala Fenil Denish Bardoliya Nagaraju Machavarapu Shri Ajay Kumar Ravindhiran Srija Malyala Agneet Chatterjee Yezhou Yang Chitta Baral Arizona State University
Foundational models such as Multimodal Large Language Models (MLLMs) with their ability to interpret images and generate intricate responses has led to their widespread adoption across multiple computer vision and nat... 详细信息
来源: 评论
Scaling Graph Convolutions for Mobile vision
Scaling Graph Convolutions for Mobile Vision
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: William Avery Mustafa Munir Radu Marculescu The University of Texas at Austin
To compete with existing mobile architectures, Mobile-ViG introduces Sparse vision Graph Attention (SVGA), a fast token-mixing operator based on the principles of GNNs. However, MobileViG scales poorly with model size... 详细信息
来源: 评论
MobileViG: Graph-Based Sparse Attention for Mobile vision Applications
MobileViG: Graph-Based Sparse Attention for Mobile Vision Ap...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Mustafa Munir William Avery Radu Marculescu The University of Texas at Austin
Traditionally, convolutional neural networks (CNN) and vision transformers (ViT) have dominated computer vision. However, recently proposed vision graph neural networks (ViG) provide a new avenue for exploration. Unfo...
来源: 评论
LaDiffGAN: Training GANs with Diffusion Supervision in Latent Spaces
LaDiffGAN: Training GANs with Diffusion Supervision in Laten...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Xuhui Liu Bohan Zeng Sicheng Gao Shanglin Li Yutang Feng Hong Li Boyu Liu Jianzhuang Liu Baochang Zhang Beihang University Shenzhen Institute of Advanced Technology Shenzhen China Zhongguancun Laboratory Beijing China Nanchang Institute of Technology Nanchang China
Diffusion models have recently become increasingly popular in a number of computer vision tasks, but they fail to achieve satisfactory results for unsupervised image-to-image translation, since they require massive tr... 详细信息
来源: 评论
Learning to Classify New Foods Incrementally Via Compressed Exemplars
Learning to Classify New Foods Incrementally Via Compressed ...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Justin Yang Zhihao Duan Jiangpeng He Fengqing Zhu Elmore School of Electrical and Computer Engineering Purdue University West Lafayette Indiana USA
Food image classification systems play a crucial role in health monitoring and diet tracking through image-based dietary assessment techniques. However, existing food recognition systems rely on static datasets charac... 详细信息
来源: 评论
MvAV-pix2pixHD: Multi-view Aerial View Image Translation
MvAV-pix2pixHD: Multi-view Aerial View Image Translation
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Jun Yu Keda Lu Shenshen Du Lin Xu Peng Chang Houde Liu Bin Lan Tianyu Liu University of Science and Technology of China Ping An Technology Co. Ltd China PAII Inc. Tsinghua Shenzhen International Graduate School Jianghuai Advance Technology Center
Multi-modal aerial view image translation involves converting aerial images from one modality to another while preserving basic details and features. These modalities encompass Synthetic Aperture Radar (SAR), Infrared... 详细信息
来源: 评论
Systematic Architectural Design of Scale Transformed Attention Condenser DNNs via Multi-Scale Class Representational Response Similarity Analysis
Systematic Architectural Design of Scale Transformed Attenti...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Andrew Hryniowski Alexander Wong Vision and Image Processing Research Group University of Waterloo Waterloo Artificial Intelligence Institute Waterloo DarwinAI Corp. Waterloo
Self-attention mechanisms are commonly included in a convolutional neural networks to achieve an improved efficiency performance balance. However, adding self-attention mechanisms adds additional hyperparameters to tu...
来源: 评论
ATOM: Attention Mixer for Efficient Dataset Distillation
ATOM: Attention Mixer for Efficient Dataset Distillation
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Samir Khaki Ahmad Sajedi Kai Wang Lucy Z. Liu Yuri A. Lawryshyn Konstantinos N. Plataniotis University of Toronto National University of Singapore Royal Bank of Canada (RBC)
Recent works in dataset distillation seek to minimize training expenses by generating a condensed synthetic dataset that encapsulates the information present in a larger real dataset. These approaches ultimately aim t... 详细信息
来源: 评论