Distribution shift can have fundamental consequences such as signaling a change in the operating environment or significantly reducing the accuracy of downstream models. Thus, understanding such distribution shifts is...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
Distribution shift can have fundamental consequences such as signaling a change in the operating environment or significantly reducing the accuracy of downstream models. Thus, understanding such distribution shifts is critical for examining and hopefully mitigating the effect of such a shift. Most prior work has focused on either natively handling distribution shift (e.g., Domain Generalization) or merely detecting a shift while assuming any detected shift can be understood and handled appropriately by a human operator. For the latter, we hope to aid in these manual mitigation tasks by explaining the distribution shift to an operator. To this end, we suggest two methods: providing a set of interpretable mappings from the original distribution to the shifted one or providing a set of distributional counterfactual examples. We provide preliminary experiments on these two methods, and discuss important concepts and challenges for moving towards a better understanding of image-based distribution shifts.
This paper describes a CNN where all CNN style 2D convolution operations that lower to matrix matrix multiplication are fully binary. The network is derived from a common building block structure that is consistent wi...
详细信息
ISBN:
(纸本)9781665448994
This paper describes a CNN where all CNN style 2D convolution operations that lower to matrix matrix multiplication are fully binary. The network is derived from a common building block structure that is consistent with a constructive proof outline showing that binary neural networks are universal function approximators. 71.24% top 1 accuracy on the 2012 ImageNet validation set was achieved with a 2 step training procedure and implementation strategies optimized for binary operands are provided.
In this paper we present and start analyzing the iCub World data-set, an object recognition data-set, we acquired using a Human-Robot Interaction (HRI) scheme and the iCub humanoid robot platform. Our set up allows fo...
详细信息
ISBN:
(纸本)9780769549903
In this paper we present and start analyzing the iCub World data-set, an object recognition data-set, we acquired using a Human-Robot Interaction (HRI) scheme and the iCub humanoid robot platform. Our set up allows for rapid acquisition and annotation of data with corresponding ground truth. While more constrained in its scopes - the iCub world is essentially a robotics research lab - we demonstrate how the proposed data-set poses challenges to current recognition systems. The iCubWorld data-set is publicly available (1).
We present a key point-based activity recognition framework, built upon pre-trained human pose estimation and facial feature detection models. Our method extracts complex static and movement-based features from key fr...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
We present a key point-based activity recognition framework, built upon pre-trained human pose estimation and facial feature detection models. Our method extracts complex static and movement-based features from key frames in videos, which are used to predict a sequence of key-frame activities. Finally, a merge procedure is employed to identify robust activity segments while ignoring outlier frame activity predictions. We analyze the different components of our framework via a wide array of experiments and draw conclusions with regards to the utility of the model and ways it can be improved. Results show our model is competitive, taking the 11th place out of 27 teams submitting to Track 3 of the 2022 AI City Challenge.
In this paper we present a unified formulation for a large class of relative pose problems with radial distortion and varying calibration. For minimal cases, we show that one can eliminate the number of parameters dow...
详细信息
ISBN:
(纸本)9781665448994
In this paper we present a unified formulation for a large class of relative pose problems with radial distortion and varying calibration. For minimal cases, we show that one can eliminate the number of parameters down to one to three. The relative pose can then be expressed using varying calibration constraints on the fundamental matrix, with entries that are polynomial in the parameters. We can then apply standard techniques based on the action matrix and Sturm sequences to construct our solvers. This enables efficient solvers for a large class of relative pose problems with radial distortion, using a common framework. We evaluate a number of these solvers for robust two-view inlier and epipolar geometry estimation, used as minimal solvers in RANSAC.
Learning a common representation space between vision and language allows deep networks to relate objects in the image to the corresponding semantic meaning. We present a model that learns a shared Gaussian mixture re...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
Learning a common representation space between vision and language allows deep networks to relate objects in the image to the corresponding semantic meaning. We present a model that learns a shared Gaussian mixture representation imposing the compositionality of the text onto the visual domain without having explicit location supervision. By combining the spatial transformer with a representation learning approach we learn to split images into separately encoded patches to associate visual and textual representations in an interpretable manner. On variations of MNIST and CIFAR10, our model is able to perform weakly supervised object detection and demonstrates its ability to extrapolate to unseen combination of objects.
Honey fraud and adulteration are an increasing concern globally. Hyperspectral imaging and machine learning can detect adulterated honey within a known set of honey, where we have captured data at different sugar conc...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
Honey fraud and adulteration are an increasing concern globally. Hyperspectral imaging and machine learning can detect adulterated honey within a known set of honey, where we have captured data at different sugar concentrations. Previous work in this area has used a minimal number of honey types, as sample preparation and data capture is a time-consuming process. This paper develops a new approach using variational autoencoders (VAEs) for generating adulterated honey data for unseen honey types. The results show that the binary adulteration detector can achieve on average 81.3% accuracy on unseen honey types by adding the generated data to the existing training data. Without including the generated data while training, the classifier can only achieve 44% on unseen honey types.
Despite the rapid progress in deep visual recognition, modern computervision datasets significantly overrepresent the developed world and models trained on such datasets underperform on images from unseen geographies...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
Despite the rapid progress in deep visual recognition, modern computervision datasets significantly overrepresent the developed world and models trained on such datasets underperform on images from unseen geographies. We investigate the effectiveness of unsupervised domain adaptation (UDA) of such models across geographies at closing this performance gap. To do so, we first curate two shifts from existing datasets to study the Geographical DA problem, and discover new challenges beyond data distribution shift: context shift, wherein object surroundings may change significantly across geographies, and subpopulation shift, wherein the intra-category distributions may shift. We demonstrate the inefficacy of standard DA methods at Geographical DA, highlighting the need for specialized geographical adaptation solutions to address the challenge of making object recognition work for everyone.
Machine Learning models have started to outperform medical experts in some classification tasks. Meanwhile, the question of how these classifiers produce certain results is attracting increasing research attention. Cu...
详细信息
ISBN:
(纸本)9781665448994
Machine Learning models have started to outperform medical experts in some classification tasks. Meanwhile, the question of how these classifiers produce certain results is attracting increasing research attention. Current interpretation methods provide a good starting point in investigating such questions, but they still massively lack the relation to the problem domain. In this work, we present how explanations of an AI system for skin image analysis can be made more domain-specific. We apply the synthesis of Local Interpretable Model-agnostic Explanations (LIME) with the ABCD-rule, a diagnostic approach of dermatologists, and present the results using a Deep Neural Network (DNN) based skin image classifier.
We propose a learning-based image compression method that achieves any arbitrary input bitrate via user-guided bit allocation to preferred regions. We verify our hypothesis of incorporating user guidance for bitrate c...
详细信息
ISBN:
(数字)9781665487399
ISBN:
(纸本)9781665487399
We propose a learning-based image compression method that achieves any arbitrary input bitrate via user-guided bit allocation to preferred regions. We verify our hypothesis of incorporating user guidance for bitrate control by experimenting with alternatives that do not have any guidance. We conduct extensive evaluation on CelebA-HQ and CityScapes dataset using standard quantitative metrics and human studies showing that our single model for multiple bitrates achieves similar or better performance as compared to previous learned image compression methods that require re-training for each new bitrate.
暂无评论