咨询与建议

限定检索结果

文献类型

  • 8,901 篇 会议
  • 43 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 8,961 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,560 篇 工学
    • 4,020 篇 计算机科学与技术...
    • 2,178 篇 软件工程
    • 1,241 篇 光学工程
    • 555 篇 控制科学与工程
    • 431 篇 信息与通信工程
    • 430 篇 机械工程
    • 294 篇 电气工程
    • 287 篇 仪器科学与技术
    • 179 篇 生物工程
    • 159 篇 生物医学工程(可授...
    • 119 篇 电子科学与技术(可...
    • 61 篇 安全科学与工程
    • 58 篇 建筑学
    • 58 篇 化学工程与技术
    • 52 篇 土木工程
    • 49 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 2,065 篇 理学
    • 1,382 篇 物理学
    • 1,198 篇 数学
    • 420 篇 统计学(可授理学、...
    • 238 篇 生物学
    • 54 篇 化学
    • 36 篇 系统科学
  • 263 篇 管理学
    • 180 篇 图书情报与档案管...
    • 89 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 223 篇 医学
    • 222 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 205 篇 艺术学
    • 205 篇 设计学(可授艺术学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 9 篇 经济学
  • 6 篇 军事学

主题

  • 3,412 篇 computer vision
  • 1,216 篇 pattern recognit...
  • 946 篇 cameras
  • 908 篇 conferences
  • 765 篇 computer science
  • 674 篇 image segmentati...
  • 618 篇 layout
  • 598 篇 training
  • 548 篇 shape
  • 518 篇 robustness
  • 451 篇 feature extracti...
  • 448 篇 humans
  • 445 篇 face recognition
  • 405 篇 computational mo...
  • 402 篇 object detection
  • 365 篇 visualization
  • 356 篇 computer archite...
  • 336 篇 application soft...
  • 304 篇 lighting
  • 259 篇 image reconstruc...

机构

  • 41 篇 microsoft resear...
  • 30 篇 department of co...
  • 25 篇 department of co...
  • 23 篇 institute for co...
  • 22 篇 department of co...
  • 22 篇 school of comput...
  • 20 篇 university of sc...
  • 20 篇 swiss fed inst t...
  • 19 篇 tsinghua univers...
  • 19 篇 institute of com...
  • 18 篇 swiss fed inst t...
  • 17 篇 the robotics ins...
  • 17 篇 carnegie mellon ...
  • 17 篇 computer vision ...
  • 17 篇 department of co...
  • 16 篇 institute of inf...
  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 15 篇 carnegie mellon ...
  • 14 篇 national laborat...

作者

  • 57 篇 timofte radu
  • 25 篇 huang thomas s.
  • 24 篇 van gool luc
  • 23 篇 s.k. nayar
  • 22 篇 nayar shree k.
  • 22 篇 t. kanade
  • 21 篇 jain anil k.
  • 20 篇 luc van gool
  • 19 篇 t.s. huang
  • 18 篇 xiaoou tang
  • 18 篇 murino vittorio
  • 18 篇 horst bischof
  • 17 篇 a.k. jain
  • 17 篇 t. darrell
  • 16 篇 g. healey
  • 16 篇 bowyer kevin w.
  • 16 篇 bischof horst
  • 15 篇 m.j. black
  • 15 篇 li stan z.
  • 15 篇 m. shah

语言

  • 8,932 篇 英文
  • 21 篇 其他
  • 8 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops"
8962 条 记 录,以下是511-520 订阅
排序:
H-Net: Unsupervised Attention-based Stereo Depth Estimation Leveraging Epipolar Geometry
H-Net: Unsupervised Attention-based Stereo Depth Estimation ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Huang, Baoru Zheng, Jian-Qing Giannarou, Stamatia Elson, Daniel S. Imperial Coll London Hamlyn Ctr Robot Surg London England Univ Oxford Kennedy Inst Rheumatol Oxford England Univ Oxford Big Data Inst Oxford England
Depth estimation from a stereo image pair has become one of the most explored applications in computer vision, with most previous methods relying on fully supervised learning settings. However, due to the difficulty i... 详细信息
来源: 评论
Simple and Efficient Architectures for Semantic Segmentation
Simple and Efficient Architectures for Semantic Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Mehta, Dushyant Skliar, Andrii Ben Yahia, Haitam Borse, Shubhankar Porikli, Fatih Habibian, Amirhossein Blankevoort, Tijmen Qualcomm AI Res San Diego CA 92121 USA
Though the state-of-the architectures for semantic segmentation, such as HRNet, demonstrate impressive accuracy, the complexity arising from their salient design choices hinders a range of model acceleration tools, an... 详细信息
来源: 评论
Beyond AUROC & co. for evaluating out-of-distribution detection performance
Beyond AUROC & co. for evaluating out-of-distribution detect...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Humblot-Renaux, Galadrielle Escalera, Sergio Moeslund, Thomas B. Aalborg University Visual Analysis and Perception Lab Denmark Universitat Autònoma de Barcelona Computer Vision Center Spain Universitat de Barcelona Dept. of Mathematics and Informatics Spain
While there has been a growing research interest in developing out-of-distribution (OOD) detection methods, there has been comparably little discussion around how these methods should be evaluated. Given their relevan...
来源: 评论
Making the V in Text-VQA Matter
Making the V in Text-VQA Matter
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Hegde, Shamanthak Jahagirdar, Soumya Gangisetty, Shankar Kle Technological University Hubballi India Cvit Iiit Hyderabad Hyderabad India Iiit Hyderabad Hyderabad India
Text-based VQA aims at answering questions by reading the text present in the images. It requires a large amount of scene-text relationship understanding compared to the VQA task. Recent studies have shown that the qu... 详细信息
来源: 评论
Proceedings - 2024 ieee/CVF conference on computer vision and pattern recognition, CVPR 2024
Proceedings - 2024 IEEE/CVF Conference on Computer Vision an...
收藏 引用
2024 ieee/CVF conference on computer vision and pattern recognition, CVPR 2024
The proceedings contain 2715 papers. The topics discussed include: revisiting adversarial training at scale;SPIDeRS: structured polarization for invisible depth and reflectance sensing;MA-LMM: memory-augmented large m...
来源: 评论
Masked vision Transformers for Hyperspectral Image Classification
Masked Vision Transformers for Hyperspectral Image Classific...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Scheibenreif, Linus Mommert, Michael Borth, Damian University of St. Gallen Aiml Lab School of Computer Science Switzerland
Transformer architectures have become state-of-the-art models in computer vision and natural language processing. To a significant degree, their success can be attributed to self-supervised pre-training on large scale... 详细信息
来源: 评论
Few-Shot Image Classification Benchmarks are Too Far From Reality: Build Back Better with Semantic Task Sampling
Few-Shot Image Classification Benchmarks are Too Far From Re...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Bennequin, Etienne Tami, Myriam Toubhans, Antoine Hudelot, Celine Univ Paris Saclay Cent Supelec Gif Sur Yvette France Sicara Paris France
Every day, a new method is published to tackle Few-Shot Image Classification, showing better and better performances on academic benchmarks. Nevertheless, we observe that these current benchmarks do not accurately rep... 详细信息
来源: 评论
Impact of Pseudo Depth on Open World Object Segmentation with Minimal User Guidance
Impact of Pseudo Depth on Open World Object Segmentation wit...
收藏 引用
2023 ieee/CVF conference on computer vision and pattern recognition workshops, CVPRW 2023
作者: Schön, Robin Ludwig, Katja Lienhart, Rainer University of Augsburg Machine Learning and Computer Vision Germany
Pseudo depth maps are depth map predicitions which are used as ground truth during training. In this paper we leverage pseudo depth maps in order to segment objects of classes that have never been seen during training... 详细信息
来源: 评论
Deep Normalized Cross-Modal Hashing with Bi-Direction Relation Reasoning
Deep Normalized Cross-Modal Hashing with Bi-Direction Relati...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sun, Changchang Latapie, Hugo Liu, Gaowen Yan, Yan IIT Dept Comp Sci Chicago IL 60616 USA Cisco Res Emerging Technol & Incubat San Jose CA USA
Due to the continuous growth of large-scale multi-modal data and increasing requirements for retrieval speed, deep cross-modal hashing has gained increasing attention recently. Most of existing studies take a similari... 详细信息
来源: 评论
The 6th AI City Challenge
The 6th AI City Challenge
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Naphade, Milind Wang, Shuo Anastasiu, David C. Tang, Zheng Chang, Ming-Ching Yao, Yue Zheng, Liang Rahman, Mohammed Shaiqur Venkatachalapathy, Archana Sharma, Anuj Feng, Qi Ablavsky, Vitaly Sclaroff, Stan Chakraborty, Pranamesh Li, Alice Li, Shangru Chellappa, Rama NVIDIA Corp Santa Clara CA 95051 USA Santa Clara Univ Santa Clara CA 95053 USA SUNY Albany Albany NY 12222 USA Australian Natl Univ Canberra ACT Australia Indian Inst Technol Kanpur Kanpur Uttar Pradesh India Iowa State Univ Ames IA USA Boston Univ Boston MA 02215 USA Univ Washington Seattle WA 98195 USA Johns Hopkins Univ Baltimore MD 21218 USA
The 6th edition of the AI City Challenge specifically focuses on problems in two domains where there is tremendous unlocked potential at the intersection of computer vision and artificial intelligence: Intelligent Tra... 详细信息
来源: 评论