咨询与建议

限定检索结果

文献类型

  • 8,905 篇 会议
  • 43 篇 期刊文献
  • 18 册 图书

馆藏范围

  • 8,965 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 4,564 篇 工学
    • 4,024 篇 计算机科学与技术...
    • 2,182 篇 软件工程
    • 1,241 篇 光学工程
    • 558 篇 控制科学与工程
    • 433 篇 信息与通信工程
    • 430 篇 机械工程
    • 294 篇 电气工程
    • 288 篇 仪器科学与技术
    • 179 篇 生物工程
    • 159 篇 生物医学工程(可授...
    • 119 篇 电子科学与技术(可...
    • 64 篇 安全科学与工程
    • 58 篇 建筑学
    • 58 篇 化学工程与技术
    • 52 篇 土木工程
    • 52 篇 交通运输工程
    • 40 篇 力学(可授工学、理...
  • 2,066 篇 理学
    • 1,382 篇 物理学
    • 1,198 篇 数学
    • 420 篇 统计学(可授理学、...
    • 238 篇 生物学
    • 55 篇 化学
    • 36 篇 系统科学
  • 266 篇 管理学
    • 182 篇 图书情报与档案管...
    • 92 篇 管理科学与工程(可...
    • 47 篇 工商管理
  • 223 篇 医学
    • 222 篇 临床医学
    • 39 篇 基础医学(可授医学...
  • 205 篇 艺术学
    • 205 篇 设计学(可授艺术学...
  • 45 篇 法学
    • 43 篇 社会学
  • 21 篇 农学
  • 14 篇 教育学
  • 9 篇 经济学
  • 6 篇 军事学

主题

  • 3,414 篇 computer vision
  • 1,216 篇 pattern recognit...
  • 946 篇 cameras
  • 908 篇 conferences
  • 765 篇 computer science
  • 674 篇 image segmentati...
  • 618 篇 layout
  • 598 篇 training
  • 548 篇 shape
  • 518 篇 robustness
  • 451 篇 feature extracti...
  • 448 篇 humans
  • 445 篇 face recognition
  • 405 篇 computational mo...
  • 402 篇 object detection
  • 365 篇 visualization
  • 356 篇 computer archite...
  • 336 篇 application soft...
  • 304 篇 lighting
  • 257 篇 image reconstruc...

机构

  • 41 篇 microsoft resear...
  • 30 篇 department of co...
  • 25 篇 department of co...
  • 23 篇 institute for co...
  • 22 篇 department of co...
  • 22 篇 school of comput...
  • 20 篇 university of sc...
  • 20 篇 swiss fed inst t...
  • 19 篇 tsinghua univers...
  • 19 篇 institute of com...
  • 18 篇 swiss fed inst t...
  • 17 篇 the robotics ins...
  • 17 篇 carnegie mellon ...
  • 17 篇 computer vision ...
  • 17 篇 department of co...
  • 16 篇 institute of inf...
  • 16 篇 school of comput...
  • 15 篇 school of comput...
  • 15 篇 carnegie mellon ...
  • 14 篇 national laborat...

作者

  • 57 篇 timofte radu
  • 25 篇 huang thomas s.
  • 24 篇 van gool luc
  • 23 篇 s.k. nayar
  • 22 篇 nayar shree k.
  • 22 篇 t. kanade
  • 21 篇 jain anil k.
  • 20 篇 luc van gool
  • 19 篇 t.s. huang
  • 18 篇 xiaoou tang
  • 18 篇 murino vittorio
  • 18 篇 horst bischof
  • 17 篇 a.k. jain
  • 17 篇 t. darrell
  • 16 篇 g. healey
  • 16 篇 bowyer kevin w.
  • 16 篇 bischof horst
  • 15 篇 m.j. black
  • 15 篇 li stan z.
  • 15 篇 m. shah

语言

  • 8,904 篇 英文
  • 53 篇 其他
  • 8 篇 中文
  • 1 篇 土耳其文
检索条件"任意字段=IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops"
8966 条 记 录,以下是741-750 订阅
排序:
Deep Spherical Manifold Gaussian Kernel for Unsupervised Domain Adaptation
Deep Spherical Manifold Gaussian Kernel for Unsupervised Dom...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Youshan Davison, Brian D. Lehigh Univ Comp Sci & Engn Bethlehem PA 18015 USA
Unsupervised Domain adaptation is an effective method in addressing the domain shift issue when transferring knowledge from an existing richly labeled domain to a new domain. Existing manifold-based methods either are... 详细信息
来源: 评论
Dot Distance for Tiny Object Detection in Aerial Images
Dot Distance for Tiny Object Detection in Aerial Images
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Xu, Chang Wang, Jinwang Yang, Wen Yu, Lei Wuhan Univ Sch Elect Informat Wuhan Peoples R China
Object detection has achieved great progress with the development of anchor-based and anchor-free detectors. However, the detection of tiny objects is still challenging due to the lack of appearance information. In th... 详细信息
来源: 评论
Pano3D: A Holistic Benchmark and a Solid Baseline for 360° Depth Estimation
Pano3D: A Holistic Benchmark and a Solid Baseline for 360° ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Albanis, Georgios Zioulis, Nikolaos Drakoulis, Petros Gkitsas, Vasileios Sterzentsenko, Vladimiros Alvarez, Federico Zarpalas, Dimitrios Daras, Petros Ctr Res & Technol Hellas Thessaloniki Greece Univ Politecn Madrid Madrid Spain
Pano3D is a new benchmark for depth estimation from spherical panoramas. It aims to assess performance across all depth estimation traits, the primary direct depth estimation performance targeting precision and accura... 详细信息
来源: 评论
Adversarial Robust Model Compression using In-Train Pruning
Adversarial Robust Model Compression using In-Train Pruning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Vemparala, Manoj-Rohit Fasfous, Nael Frickenstein, Alexander Sarkar, Sreetama Zhao, Qi Kuhn, Sabine Frickenstein, Lukas Singh, Anmol Unger, Christian Nagaraja, Naveen-Shankar Wressnegger, Christian Stechele, Walter BMW Autonomous Driving Munich Germany Tech Univ Munich Munich Germany Karlsruhe Inst Technol Karlsruhe Germany
Efficiently deploying learning-based systems on embedded hardware is challenging for various reasons, two of which are considered in this paper: The model's size and its robustness against attacks. Both need to be... 详细信息
来源: 评论
Manipulation Detection in Satellite Images Using vision Transformer
Manipulation Detection in Satellite Images Using Vision Tran...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Horvath, Janos Baireddy, Sriram Hao, Hanxiang Montserrat, Daniel Mas Delp, Edward J. Purdue Univ Sch Elect & Comp Engn Video & Image Proc Lab VIPER W Lafayette IN 47907 USA
A growing number of commercial satellite companies provide easily accessible satellite imagery. Overhead imagery is used by numerous industries including agriculture, forestry, natural disaster analysis, and meteorolo... 详细信息
来源: 评论
CompConv: A Compact Convolution Module for Efficient Feature Learning
CompConv: A Compact Convolution Module for Efficient Feature...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Zhang, Chen Xu, Yinghao Shen, Yujun Zhejiang Univ Hangzhou Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China
Convolutional Neural Networks (CNNs) have achieved remarkable success in various computer vision tasks but rely on tremendous computational cost. To solve this problem, existing approaches either compress well-trained... 详细信息
来源: 评论
T-DEED: Temporal-Discriminability Enhancer Encoder-Decoder for Precise Event Spotting in Sports Videos
T-DEED: Temporal-Discriminability Enhancer Encoder-Decoder f...
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Artur Xarles Sergio Escalera Thomas B. Moeslund Albert Clapés Universitat de Barcelona Spain Computer Vision Center Spain Aalborg University Denmark
In this paper, we introduce T-DEED, a Temporal-Discriminability Enhancer Encoder-Decoder for Precise Event Spotting in sports videos. T-DEED addresses multiple challenges in the task, including the need for discrimina... 详细信息
来源: 评论
Finding Facial Forgery Artifacts with Parts-Based Detectors
Finding Facial Forgery Artifacts with Parts-Based Detectors
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Schwarcz, Steven Chellappa, Rama Univ Maryland College Pk MD 20742 USA Johns Hopkins Univ Baltimore MD USA
Manipulated videos, especially those where the identity of an individual has been modified using deep neural networks, are becoming an increasingly relevant threat in the modern day. In this paper, we seek to develop ... 详细信息
来源: 评论
Contrastive Domain Adaptation
Contrastive Domain Adaptation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Thota, Mamatha Leontidis, Georgios Univ Lincoln Sch Comp Sci Lincoln LN6 7TS England Univ Aberdeen Dept Comp Sci Aberdeen AB24 3UE Scotland
Recently, contrastive self-supervised learning has become a key component for learning visual representations across many computer vision tasks and benchmarks. However, contrastive learning in the context of domain ad... 详细信息
来源: 评论
Segment Anything in Food Images
Segment Anything in Food Images
收藏 引用
ieee computer society conference on computer vision and pattern recognition workshops (CVPRW)
作者: Saeed S. Alahmari Michael Gardner Tawfiq Salem Najran University Saudi Arabia King Faisal University Saudi Arabia Purdue University USA
This paper introduces a new approach for food image segmentation utilizing the Segment Anything Model (SAM), with the additional refinement achieved through fine-tuning with Low-Rank Adaptation layers (LoRA). The segm... 详细信息
来源: 评论