咨询与建议

限定检索结果

文献类型

  • 3,027 篇 会议
  • 514 篇 期刊文献
  • 189 册 图书

馆藏范围

  • 3,730 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,881 篇 工学
    • 1,370 篇 计算机科学与技术...
    • 585 篇 生物工程
    • 569 篇 电气工程
    • 528 篇 软件工程
    • 474 篇 生物医学工程(可授...
    • 162 篇 化学工程与技术
    • 156 篇 控制科学与工程
    • 153 篇 信息与通信工程
    • 65 篇 机械工程
    • 51 篇 光学工程
    • 38 篇 电子科学与技术(可...
    • 30 篇 交通运输工程
    • 25 篇 仪器科学与技术
    • 18 篇 动力工程及工程热...
  • 1,376 篇 理学
    • 1,115 篇 生物学
    • 695 篇 数学
    • 486 篇 统计学(可授理学、...
    • 177 篇 化学
    • 77 篇 物理学
    • 63 篇 系统科学
  • 273 篇 医学
    • 199 篇 基础医学(可授医学...
    • 107 篇 临床医学
    • 76 篇 药学(可授医学、理...
    • 66 篇 公共卫生与预防医...
  • 248 篇 管理学
    • 130 篇 管理科学与工程(可...
    • 90 篇 图书情报与档案管...
    • 40 篇 公共管理
    • 35 篇 工商管理
  • 124 篇 农学
    • 107 篇 作物学
  • 21 篇 法学
    • 20 篇 社会学
  • 16 篇 文学
  • 14 篇 教育学
  • 13 篇 经济学
  • 1 篇 艺术学

主题

  • 1,121 篇 bioinformatics
  • 486 篇 genomics
  • 413 篇 proteins
  • 369 篇 computational mo...
  • 345 篇 artificial intel...
  • 333 篇 biological syste...
  • 298 篇 computational bi...
  • 277 篇 biology computin...
  • 171 篇 computational in...
  • 162 篇 dna
  • 161 篇 sequences
  • 160 篇 gene expression
  • 153 篇 feature extracti...
  • 149 篇 diseases
  • 148 篇 machine learning
  • 141 篇 databases
  • 132 篇 data mining
  • 129 篇 predictive model...
  • 123 篇 humans
  • 123 篇 computational bi...

机构

  • 16 篇 indian stat inst...
  • 13 篇 ieee
  • 12 篇 mit comp sci & a...
  • 11 篇 mit comp sci & a...
  • 11 篇 mit dept math ca...
  • 11 篇 department of co...
  • 11 篇 bioinformatics r...
  • 9 篇 indian stat inst...
  • 8 篇 jiangnan univ sc...
  • 8 篇 fudan univ shang...
  • 8 篇 school of comput...
  • 8 篇 department of co...
  • 8 篇 college of compu...
  • 7 篇 inria nancy gran...
  • 7 篇 national center ...
  • 7 篇 icube université...
  • 7 篇 erasmus mc - uni...
  • 7 篇 brock univ dept ...
  • 7 篇 fudan univ inst ...
  • 7 篇 university of mi...

作者

  • 21 篇 de-shuang huang
  • 18 篇 bandyopadhyay sa...
  • 15 篇 rajapakse jagath...
  • 15 篇 berger bonnie
  • 14 篇 houghten sherida...
  • 13 篇 huseyin seker
  • 13 篇 tang jijun
  • 13 篇 amarda shehu
  • 13 篇 chauhan ritu
  • 13 篇 guo fei
  • 12 篇 ying xu
  • 11 篇 daniel ashlock
  • 11 篇 ignacio rojas
  • 11 篇 mohamad mohd sab...
  • 11 篇 ashlock daniel
  • 10 篇 n. karimi
  • 10 篇 seker huseyin
  • 10 篇 shinn-ying ho
  • 10 篇 jiang xingpeng
  • 10 篇 s. samavi

语言

  • 3,706 篇 英文
  • 18 篇 其他
  • 10 篇 中文
检索条件"任意字段=IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology"
3730 条 记 录,以下是3711-3720 订阅
排序:
Identifying promoter features of co-regulated genes with similar network motifs
收藏 引用
BMC bioinformatics 2009年 第s4期10卷 S1-S1页
作者: Harari, Oscar del Val, Coral Romero-Zaliz, Rocio Shin, Dongwoo Huang, Henry Groisman, Eduardo A. Zwir, Igor Univ Granada Dept Comp Sci & Artificial Intelligence E-18071 Granada Spain Sungkyunkwan Univ Sch Med Samsung Biomed Res Inst Dept Mol Cell Biol Suwon 440746 South Korea Washington Univ Sch Med Dept Mol Microbiol Howard Hughes Med Inst St Louis MO 63110 USA
Background: A large amount of computational and experimental work has been devoted to uncovering network motifs in gene regulatory networks. The leading hypothesis is that evolutionary processes independently selected... 详细信息
来源: 评论
MQML: Multi-Omic Quantum Machine Learning Based Cancer Classification, Biomarker Identification in Human Lung Adenocarcinoma
MQML: Multi-Omic Quantum Machine Learning Based Cancer Class...
收藏 引用
Quantum Computing and Engineering (QCE), ieee International conference on
作者: Mandeep Kaur Saggi Sabre Kais Department of Chemistry Purdue University West Lafayette IN USA Purdue Quantum Science and Engineering Institute Purdue University West Lafayette IN USA
Quantum machine learning (QML) presents novel opportunities for resolving, accelerating, and refining computational biology challenges. In biomedical research and personalized medicine, multi-omics integration offers ... 详细信息
来源: 评论
Automatic Metadata Generation for Fish Specimen Image Collections  21
Automatic Metadata Generation for Fish Specimen Image Collec...
收藏 引用
Proceedings of the 2021 ACM/ieee Joint conference on Digital Libraries
作者: Joel Pepper Jane Greenberg Yasin Bakiş Xiaojun Wang Henry Bart, Jr. David Breen Department of Computer Science Drexel University Philadelphia PA USA Department of Information Science Drexel University Philadelphia PA USA Biodiversity Research Institute Tulane University New Orleans LA USA
Metadata are key descriptors of research data, particularly for researchers seeking to apply machine learning (ML) to the vast collections of digitized specimens. Unfortunately, the available metadata is often sparse ... 详细信息
来源: 评论
Preface
收藏 引用
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial intelligence and Lecture Notes in bioinformatics) 2006年 3939 LNBI卷
作者: Priami, Corrado The Microsoft Research University of Trento Centre for Computational and Systems Biology Piazza Manci 17 PovoTN38050 Italy
来源: 评论
Correction to "Attribute Clustering for Grouping, Selection, and Classification of Gene Expression Data"
收藏 引用
ieee/ACM Transactions on computational biology and bioinformatics 2007年 第1期4卷 157-157页
作者: Wai-ho Au Keith C.c. Chan Andrew K.c. Wong Yang Wang One Microsoft Way Microsoft Corporation Redmond WA Department of Computing The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong Department of Systems Design Engineering University of Waterloo Waterloo Ontario Canada Pattern Discovery Software Systems Ltd. Waterloo Ontario Canada
This is a correction to a typographical error in (11) in [1] which present the calculation of the sum of the multiple significant interdependence redundancy measure. Equation (11) in [1] should be: $$k=\arg\max\nolimi... 详细信息
来源: 评论
Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins
收藏 引用
bioinformatics 2010年 第18期26卷 i645-i652页
作者: Qi, Yanjun Tastan, Oznur Carbonell, Jaime G. Klein-Seetharaman, Judith Weston, Jason NEC Labs Amer Princeton NJ 08540 USA Carnegie Mellon Univ Sch Comp Sci Pittsburgh PA 15213 USA Google Res NY New York NY 10011 USA
Motivation: Protein-protein interactions (PPIs) are critical for virtually every biological function. Recently, researchers suggested to use supervised learning for the task of classifying pairs of proteins as interac... 详细信息
来源: 评论
Learning biophysically-motivated parameters for alpha helix prediction
收藏 引用
BMC bioinformatics 2007年 第s5期8卷 S3-S3页
作者: Gassend, Blaise O'Donnell, Charles W. Thies, William Lee, Andrew van Dijk, Marten Devadas, Srinivas MIT Comp Sci & Artificial Intelligence Lab Cambridge MA 02139 USA
Background: Our goal is to develop a state-of-the-art protein secondary structure predictor, with an intuitive and biophysically-motivated energy model. We treat structure prediction as an optimization problem, using ... 详细信息
来源: 评论
A probabilistic model for mining implicit 'chemical compound-gene' relations from literature
收藏 引用
bioinformatics 2005年 第Sup2期21卷 245-251页
作者: Zhu, SF Okuno, Y Tsujimoto, G Mamitsuka, H Kyoto Univ Bioinformat Ctr Chem Res Inst Uji Kyoto 6110011 Japan Kyoto Univ Grad Sch Pharmaceut Sci Sakyo Ku Kyoto 6068501 Japan
Motivation: The importance of chemical compounds has been emphasized more in molecular biology, and 'chemical genomics' has attracted a great deal of attention in recent years. Thus an important issue in curre... 详细信息
来源: 评论
Semi-supervised analysis of gene expression profiles for lineage-specific development in the Caenorhabditis elegans embryo
收藏 引用
bioinformatics 2006年 第14期22卷 E417-E423页
作者: Qi, Yuan Missiuro, Patrycja E. Kapoor, Ashish Hunter, Craig P. Jaakkola, Tommi S. Gifford, David K. Ge, Hui MIT Comp Sci & Artificial Intelligence Lab Cambridge MA 02139 USA Cambridge Ctr 9 Whitehead Inst Cambridge MA 02142 USA Microsoft Res Redmond WA 98052 USA Harvard Univ Dept Mol & Cellular Biol Cambridge MA 02138 USA
Motivation: Gene expression profiling is a powerful approach to identify genes that may be involved in a specific biological process on a global scale. For example, gene expression profiling of mutant animals that lac...
来源: 评论
A maximum common substructure-based algorithm for searching and predicting drug-like compounds
收藏 引用
bioinformatics 2008年 第13期24卷 I366-I374页
作者: Cao, Yiqun Jiang, Tao Girke, Thomas Univ Calif Riverside Dept Comp Sci & Engn Riverside CA 92521 USA Univ Calif Riverside Dept Bot & Plant Sci Riverside CA 92521 USA
Motivation: The prediction of biologically active compounds is of great importance for high-throughput screening (HTS) approaches in drug discovery and chemical genomics. Many computational methods in this area focus ... 详细信息
来源: 评论