咨询与建议

限定检索结果

文献类型

  • 19,438 篇 会议
  • 46 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 19,488 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,440 篇 工学
    • 10,282 篇 计算机科学与技术...
    • 2,395 篇 机械工程
    • 2,007 篇 软件工程
    • 813 篇 光学工程
    • 531 篇 电气工程
    • 419 篇 控制科学与工程
    • 322 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 60 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 33 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 20 篇 材料科学与工程(可...
    • 20 篇 交通运输工程
  • 3,409 篇 医学
    • 3,408 篇 临床医学
  • 1,980 篇 理学
    • 1,006 篇 数学
    • 973 篇 物理学
    • 359 篇 统计学(可授理学、...
    • 336 篇 生物学
    • 231 篇 系统科学
    • 24 篇 化学
  • 258 篇 管理学
    • 138 篇 管理科学与工程(可...
    • 122 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 农学
  • 8 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 7,893 篇 computer vision
  • 2,727 篇 training
  • 2,680 篇 pattern recognit...
  • 1,760 篇 computational mo...
  • 1,644 篇 visualization
  • 1,410 篇 cameras
  • 1,372 篇 three-dimensiona...
  • 1,327 篇 shape
  • 1,213 篇 face recognition
  • 1,207 篇 image segmentati...
  • 1,164 篇 feature extracti...
  • 1,109 篇 robustness
  • 1,087 篇 semantics
  • 983 篇 layout
  • 959 篇 object detection
  • 949 篇 computer archite...
  • 942 篇 benchmark testin...
  • 931 篇 codes
  • 902 篇 computer science
  • 859 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 161 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 106 篇 tsinghua univ pe...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 73 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 66 篇 shanghai jiao to...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 45 篇 luc van gool
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 38 篇 li stan z.
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,483 篇 英文
  • 2 篇 日文
  • 2 篇 其他
  • 2 篇 中文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000"
19489 条 记 录,以下是301-310 订阅
Material Palette: Extraction of Materials from a Single Image
Material Palette: Extraction of Materials from a Single Imag...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lopes, Ivan Pizzati, Fabio de Charette, Raoul INRIA Paris France Univ Oxford Oxford England
Physically-Based Rendering (PBR) is key to modeling the interaction between light and materials, and finds extensive applications across computer graphics domains. However, acquiring PBR materials is costly and requir... 详细信息
来源: 评论
One Prompt Word is Enough to Boost Adversarial Robustness for Pre-trained vision-Language Models
One Prompt Word is Enough to Boost Adversarial Robustness fo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lin, L. Guan, Haoyan Qiu, Jianing Spratling, Michael Kings Coll London London England Imperial Coll London London England
Large pre-trained vision-Language Models (VLMs) like CLIP, despite having remarkable generalization ability, are highly vulnerable to adversarial examples. This work studies the adversarial robustness of VLMs from the... 详细信息
来源: 评论
Zero-Reference Low-Light Enhancement via Physical Quadruple Priors
Zero-Reference Low-Light Enhancement via Physical Quadruple ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Wenjing Yang, Huan Fu, Jianlong Liu, Jiaying Peking Univ Beijing Peoples R China 01 AI Beijing Peoples R China Microsoft Res Asia Beijing Peoples R China
Understanding illumination and reducing the need for supervision pose a significant challenge in low-light enhancement. Current approaches are highly sensitive to data usage during training and illumination-specific h... 详细信息
来源: 评论
Random Entangled Tokens for Adversarially Robust vision Transformer
Random Entangled Tokens for Adversarially Robust Vision Tran...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gong, Huihui Dong, Mingjing Mao, Siqi Camtepe, Seyit Nepal, Surya Xu, Chang Univ Sydney Sydney NSW Australia CSIRO Data61 Eveleigh Australia City Univ Hong Kong Hong Kong Peoples R China Univ New South Wales Sydney NSW Australia
vision Transformers (ViTs) have emerged as a compelling alternative to Convolutional Neural Networks ( CNNs) in the realm of computer vision, showcasing tremendous potential. However, recent research has unveiled a su... 详细信息
来源: 评论
Connecting NeRFs, Images, and Text
Connecting NeRFs, Images, and Text
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ballerini, Francesco Ramirez, Pierluigi Zama Mirabella, Roberto Salti, Samuele Di Stefano, Luigi Univ Bologna Bologna Italy
Neural Radiance Fields (NeRFs) have emerged as a standard framework for representing 3D scenes and objects, introducing a novel data type for information exchange and storage. Concurrently, significant progress has be... 详细信息
来源: 评论
Learning from One Continuous Video Stream
Learning from One Continuous Video Stream
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Carreira, Joao King, Michael Patraucean, Viorica Gokal, Dilara Ionescu, Cristian Yang, Yi Zoran, Daniel Heyward, Joseph Doersch, Carl Aytar, Yusuf Damen, Di Liu Zisserman, Andrew Google DeepMind London 1 England Univ Bristol Bristol Avon England Univ Oxford Oxford England
We introduce a framework for online learning from a single continuous video stream - the way people and animals learn, without mini-batches, data augmentation or shuffling. This poses great challenges given the high c... 详细信息
来源: 评论
Weak-to-Strong 3D Object Detection with X-Ray Distillation
Weak-to-Strong 3D Object Detection with X-Ray Distillation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gambashidze, Alexander Dadukin, Aleksandr Golyadkin, Maxim Razzhivina, Maria Makarov, Ilya Artificial Intelligence Res Inst Barcelona Spain HSE Univ Moscow Russia ISP RAS Moscow Russia
This paper addresses the critical challenges of sparsity and occlusion in LiDAR-based 3D object detection. Current methods often rely on supplementary modules or specific architectural designs, potentially limiting th... 详细信息
来源: 评论
DiffAM: Diffusion-based Adversarial Makeup Transfer for Facial Privacy Protection
DiffAM: Diffusion-based Adversarial Makeup Transfer for Faci...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sun, Yuhao Yu, Lingyun Xie, Hongtao Li, Jiaming Zhang, Yongdong Univ Sci & Technol China Hefei Peoples R China
With the rapid development of face recognition (FR) systems, the privacy of face images on social media is facing severe challenges due to the abuse of unauthorized FR systems. Some studies utilize adversarial attack ... 详细信息
来源: 评论
Contextual Augmented Global Contrast for Multimodal Intent recognition
Contextual Augmented Global Contrast for Multimodal Intent R...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Sun, Kaili Xie, Zhiwen Ye, Mang Zhang, Huyin Wuhan Univ Sch Comp Sci Wuhan Peoples R China Cent China Normal Univ Sch Comp Sci Wuhan Peoples R China
Multimodal intent recognition (MIR) aims to perceive the human intent polarity via language, visual, and acoustic modalities. The inherent intent ambiguity makes it challenging to recognize in multimodal scenarios. Ex... 详细信息
来源: 评论
EventDance: Unsupervised Source-free Cross-modal Adaptation for Event-based Object recognition
EventDance: Unsupervised Source-free Cross-modal Adaptation ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zheng, Xu Wang, Lin HKUST GZ AI Thrust Guangzhou Peoples R China HKUST Dept CSE Guangzhou Peoples R China
In this paper, we make the first attempt at achieving the cross-modal (i.e., image-to-events) adaptation for event-based object recognition without accessing any labeled source image data owning to privacy and commerc...
来源: 评论