咨询与建议

限定检索结果

文献类型

  • 19,438 篇 会议
  • 46 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 19,488 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,440 篇 工学
    • 10,282 篇 计算机科学与技术...
    • 2,395 篇 机械工程
    • 2,007 篇 软件工程
    • 813 篇 光学工程
    • 531 篇 电气工程
    • 419 篇 控制科学与工程
    • 322 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 60 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 33 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 20 篇 材料科学与工程(可...
    • 20 篇 交通运输工程
  • 3,409 篇 医学
    • 3,408 篇 临床医学
  • 1,980 篇 理学
    • 1,006 篇 数学
    • 973 篇 物理学
    • 359 篇 统计学(可授理学、...
    • 336 篇 生物学
    • 231 篇 系统科学
    • 24 篇 化学
  • 258 篇 管理学
    • 138 篇 管理科学与工程(可...
    • 122 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 农学
  • 8 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 7,893 篇 computer vision
  • 2,727 篇 training
  • 2,680 篇 pattern recognit...
  • 1,760 篇 computational mo...
  • 1,644 篇 visualization
  • 1,410 篇 cameras
  • 1,372 篇 three-dimensiona...
  • 1,327 篇 shape
  • 1,213 篇 face recognition
  • 1,207 篇 image segmentati...
  • 1,164 篇 feature extracti...
  • 1,109 篇 robustness
  • 1,087 篇 semantics
  • 983 篇 layout
  • 959 篇 object detection
  • 949 篇 computer archite...
  • 942 篇 benchmark testin...
  • 931 篇 codes
  • 902 篇 computer science
  • 859 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 161 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 106 篇 tsinghua univ pe...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 73 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 66 篇 shanghai jiao to...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 45 篇 luc van gool
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 38 篇 li stan z.
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,484 篇 英文
  • 2 篇 日文
  • 2 篇 中文
  • 1 篇 其他
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000"
19489 条 记 录,以下是4591-4600 订阅
排序:
DyGLIP: A Dynamic Graph Model with Link Prediction for Accurate Multi-Camera Multiple Object Tracking
<i>DyGLIP</i>: A Dynamic Graph Model with Link Prediction fo...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Quach, Kha Gia Pha Nguyen Le, Huu Truong, Thanh-Dat Duong, Chi Nhan Minh-Triet Tran Luu, Khoa Concordia Univ Montreal PQ Canada VinAI Res Hanoi Vietnam Chalmers Univ Technol Gothenburg Sweden Univ Arkansas Fayetteville AR 72701 USA VNU HCM Univ Sci Ho Chi Minh City Vietnam
Multi-Camera Multiple Object Tracking (MC-MOT) is a significant computer vision problem due to its emerging applicability in several real-world applications. Despite a large number of existing works, solving the data ... 详细信息
来源: 评论
Bi-GCN: Binary Graph Convolutional Network
Bi-GCN: Binary Graph Convolutional Network
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Junfu Wang, Yunhong Yang, Zhen Yang, Liang Guo, Yuanfang Beihang Univ State Key Lab Software Dev Environm Beijing Peoples R China Beihang Univ Sch Comp Sci & Engn Beijing Peoples R China Hebei Univ Technol Sch Artificial Intelligence Tianjin Peoples R China
Graph Neural Networks (GNNs) have achieved tremendous success in graph representation learning. Unfortunately, current GNNs usually rely on loading the entire attributed graph into network for processing. This implici... 详细信息
来源: 评论
The Temporal Opportunist: Self-Supervised Multi-Frame Monocular Depth
The Temporal Opportunist: Self-Supervised Multi-Frame Monocu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Watson, Jamie Mac Aodha, Oisin Prisacariu, Victor Brostow, Gabriel Firman, Michael Niantic San Francisco CA 94111 USA Univ Edinburgh Edinburgh Midlothian Scotland Univ Oxford Oxford England UCL London England
Self-supervised monocular depth estimation networks are trained to predict scene depth using nearby frames as a supervision signal during training. However, for many applications, sequence information in the form of v... 详细信息
来源: 评论
Use Your Head: Improving Long-Tail Video recognition
Use Your Head: Improving Long-Tail Video Recognition
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Toby Perrett Saptarshi Sinha Tilo Burghardt Majid Mirmehdi Dima Damen University of Bristol UK
This paper presents an investigation into long-tail video recognition. We demonstrate that, unlike naturally-collected video datasets and existing long-tail image benchmarks, current video benchmarks fall short on mul...
来源: 评论
MobileDets: Searching for Object Detection Architectures for Mobile Accelerators
MobileDets: Searching for Object Detection Architectures for...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xiong, Yunyang Liu, Hanxiao Gupta, Suyog Akin, Berkin Bender, Gabriel Wang, Yongzhe Kindermans, Pieter-Jan Tan, Mingxing Singh, Vikas Chen, Bo Univ Wisconsin Madison WI 53705 USA Google Mountain View CA 94043 USA
Inverted bottleneck layers, which are built upon depthwise convolutions, have been the predominant building blocks in state-of-the-art object detection models on mobile devices. In this work, we investigate the optima... 详细信息
来源: 评论
Evidential Active recognition: Intelligent and Prudent Open-World Embodied Perception
Evidential Active Recognition: Intelligent and Prudent Open-...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Lei Fan Mingfu Liang Yunxuan Li Gang Hua Ying Wu Northwestern University Wormpex AI Research
Active recognition enables robots to intelligently explore novel observations, thereby acquiring more information while circumventing undesired viewing conditions. Recent approaches favor learning policies from simula... 详细信息
来源: 评论
RankDetNet: Delving into Ranking Constraints for Object Detection
RankDetNet: Delving into Ranking Constraints for Object Dete...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Ji Li, Dong Zheng, Rongzhang Tian, Lu Shan, Yi Xilinx Inc Beijing Peoples R China
Modern object detection approaches cast detecting objects as optimizing two subtasks of classification and localization simultaneously. Existing methods often learn the classification task by optimizing each proposal ... 详细信息
来源: 评论
TransNAS-Bench-101: Improving transferability and Generalizability of Cross-Task Neural Architecture Search
TransNAS-Bench-101: Improving transferability and Generaliza...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Duan, Yawen Chen, Xin Xu, Hang Chen, Zewei Liang, Xiaodan Zhang, Tong Li, Zhenguo Univ Hong Kong Hong Kong Peoples R China Huawei Noahs Ark Lab Hong Kong Peoples R China Sun Yat Sen Univ Guangzhou Peoples R China Hong Kong Univ Sci & Technol Hong Kong Peoples R China
Recent breakthroughs of Neural Architecture Search (NAS) extend the field's research scope towards a broader range of vision tasks and more diversified search spaces. While existing NAS methods mostly design archi... 详细信息
来源: 评论
Multi-shot Temporal Event Localization: a Benchmark
Multi-shot Temporal Event Localization: a Benchmark
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Xiaolong Hu, Yao Bai, Song Ding, Fei Bai, Xiang Torr, Philip H. S. Huazhong Univ Sci & Technol Wuhan Peoples R China Alibaba Grp Hangzhou Peoples R China Univ Oxford Oxford England
Current developments in temporal event or action localization usually target actions captured by a single camera. However, extensive events or actions in the wild may be captured as a sequence of shots by multiple cam... 详细信息
来源: 评论
Towards Extremely Compact RNNs for Video recognition with Fully Decomposed Hierarchical Tucker Structure
Towards Extremely Compact RNNs for Video Recognition with Fu...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yin, Miao Liao, Siyu Liu, Xiao-Yang Wang, Xiaodong Yuan, Bo Rutgers State Univ Newark NJ 07101 USA Amazon Seattle WA USA Columbia Univ New York NY 10027 USA
Recurrent Neural Networks (RNNs) have been widely used in sequence analysis and modeling. However, when processing high-dimensional data, RNNs typically require very large model sizes, thereby bringing a series of dep... 详细信息
来源: 评论