咨询与建议

限定检索结果

文献类型

  • 19,438 篇 会议
  • 46 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 19,488 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,440 篇 工学
    • 10,282 篇 计算机科学与技术...
    • 2,395 篇 机械工程
    • 2,007 篇 软件工程
    • 813 篇 光学工程
    • 531 篇 电气工程
    • 419 篇 控制科学与工程
    • 322 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 60 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 33 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 20 篇 材料科学与工程(可...
    • 20 篇 交通运输工程
  • 3,409 篇 医学
    • 3,408 篇 临床医学
  • 1,980 篇 理学
    • 1,006 篇 数学
    • 973 篇 物理学
    • 359 篇 统计学(可授理学、...
    • 336 篇 生物学
    • 231 篇 系统科学
    • 24 篇 化学
  • 258 篇 管理学
    • 138 篇 管理科学与工程(可...
    • 122 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 农学
  • 8 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 7,893 篇 computer vision
  • 2,727 篇 training
  • 2,680 篇 pattern recognit...
  • 1,760 篇 computational mo...
  • 1,644 篇 visualization
  • 1,410 篇 cameras
  • 1,372 篇 three-dimensiona...
  • 1,327 篇 shape
  • 1,213 篇 face recognition
  • 1,207 篇 image segmentati...
  • 1,164 篇 feature extracti...
  • 1,109 篇 robustness
  • 1,087 篇 semantics
  • 983 篇 layout
  • 959 篇 object detection
  • 949 篇 computer archite...
  • 942 篇 benchmark testin...
  • 931 篇 codes
  • 902 篇 computer science
  • 859 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 161 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 106 篇 tsinghua univ pe...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 73 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 66 篇 shanghai jiao to...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 45 篇 luc van gool
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 38 篇 li stan z.
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,484 篇 英文
  • 2 篇 日文
  • 2 篇 中文
  • 1 篇 其他
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000"
19489 条 记 录,以下是4611-4620 订阅
排序:
Rank-One Prior: Toward Real-Time Scene Recovery
Rank-One Prior: Toward Real-Time Scene Recovery
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Jun Liu, Ryan Wen Sun, Jianing Zeng, Tieyong Northeast Normal Univ Sch Math & Stat Changchun Peoples R China Northeast Normal Univ Key Lab Appl Stat MOE Changchun Peoples R China Wuhan Univ Technol Sch Nav Wuhan Peoples R China Northeast Normal Univ Jilin Natl Appl Math Ctr Changchun Peoples R China Chinese Univ Hong Kong Dept Math Shatin Hong Kong Peoples R China
Scene recovery is a fundamental imaging task for several practical applications, e.g., video surveillance and autonomous vehicles, etc. To improve visual quality under different weather/imaging conditions, we propose ... 详细信息
来源: 评论
Prior Based Human Completion
Prior Based Human Completion
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Zibo Liu, Wen Xu, Yanyu Chen, Xianing Luo, Weixin Jin, Lei Zhu, Bohui Liu, Tong Zhao, Binqiang Gao, Shenghua ShanghaiTech Univ Shanghai Peoples R China ASTAR Inst High Performance Comp Singapore Singapore Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China Alibaba Grp Hangzhou Peoples R China Taobao Hangzhou Peoples R China
We study a very challenging task, human image completion, which tries to recover the human body part with a reasonable human shape from the corrupted region. Since each human body part is unique, it is infeasible to r... 详细信息
来源: 评论
Bayes' Rays: Uncertainty Quantification for Neural Radiance Fields
Bayes' Rays: Uncertainty Quantification for Neural Radiance ...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Lily Goli Cody Reading Silvia Sellán Alec Jacobson Andrea Tagliasacchi University of Toronto Simon Fraser University Adobe Research Google DeepMind
Neural Radiance Fields (NeRFs) have shown promise in applications like view synthesis and depth estimation, but learning from multiview images faces inherent uncertain-ties. Current methods to quantify them are either... 详细信息
来源: 评论
Dynamic Domain Adaptation for Efficient Inference
Dynamic Domain Adaptation for Efficient Inference
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Shuang Zhang, JinMing Ma, Wenxuan Liu, Chi Harold Li, Wei Beijing Inst Technol Beijing Peoples R China Inceptio Tech Fremont CA USA
Domain adaptation (DA) enables knowledge transfer from a labeled source domain to an unlabeled target domain by reducing the cross-domain distribution discrepancy. Most prior DA approaches leverage complicated and pow... 详细信息
来源: 评论
Multimodal Industrial Anomaly Detection by Crossmodal Feature Mapping
Multimodal Industrial Anomaly Detection by Crossmodal Featur...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Alex Costanzino Pierluigi Zama Ramirez Giuseppe Lisanti Luigi Di Stefano Department of Computer Science and Engineering (DISI) CVLAB University of Bologna Italy
Recent advancements have shown the potential of lever-aging both point clouds and images to localize anomalies. Nevertheless, their applicability in industrial manufacturing is often constrained by significant drawbac... 详细信息
来源: 评论
Dynamic LiDAR Re-Simulation Using Compositional Neural Fields
Dynamic LiDAR Re-Simulation Using Compositional Neural Field...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Hanfeng Wu Xingxing Zuo Stefan Leutenegger Or Litany Konrad Schindler Shengyu Huang ETH Zurich TU Munich Technion NVIDIA
We introduce DyNFL, a novel neural field-based approach for high-fidelity re-simulation of LiDAR scans in dynamic driving scenes. DyNFL processes LiDAR measurements from dynamic environments, accompanied by bounding b... 详细信息
来源: 评论
iMiGUE: An Identity-free Video Dataset for Micro-Gesture Understanding and Emotion Analysis
iMiGUE: An Identity-free Video Dataset for Micro-Gesture Und...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Xin Shi, Henglin Chen, Haoyu Yu, Zitong Li, Xiaobai Zhao, Guoying Univ Oulu Ctr Machine Vis & Signal Anal Oulu Finland Tianjin Univ Sch Elect & Informat Engn Tianjin Peoples R China Univ Oulu Oulu Finland
We introduce a new dataset for the emotional artificial intelligence research: identity-free video dataset for Micro-Gesture Understanding and Emotion analysis (iMiGUE). Different from existing public datasets, iMiGUE... 详细信息
来源: 评论
Temporal Context Aggregation Network for Temporal Action Proposal Refinement
Temporal Context Aggregation Network for Temporal Action Pro...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Qing, Zhiwu Su, Haisheng Gan, Weihao Wang, Dongliang Wu, Wei Wang, Xiang Qiao, Yu Yan, Junjie Gao, Changxin Sang, Nong Huazhong Univ Sci & Technol Key Lab Image Proc & Intelligent Control Sch Artificial Intelligence & Automat Wuhan Peoples R China SenseTime Res Hong Kong Peoples R China Chinese Acad Sci Shenzhen Inst Adv Technol Beijing Peoples R China Shanghai AI Lab Shanghai Peoples R China
Temporal action proposal generation aims to estimate temporal intervals of actions in untrimmed videos, which is a challenging yet important task in the video understanding field. The proposals generated by current me... 详细信息
来源: 评论
Dense Contrastive Learning for Self-Supervised Visual Pre-Training
Dense Contrastive Learning for Self-Supervised Visual Pre-Tr...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Xinlong Zhang, Rufeng Shen, Chunhua Kong, Tao Li, Lei Univ Adelaide Adelaide SA Australia Tongji Univ Shanghai Peoples R China ByteDance AI Lab Beijing Peoples R China
To date, most existing self-supervised learning methods are designed and optimized for image classification. These pre-trained models can be sub-optimal for dense prediction tasks due to the discrepancy between image-... 详细信息
来源: 评论
MetaCorrection: Domain-aware Meta Loss Correction for Unsupervised Domain Adaptation in Semantic Segmentation
MetaCorrection: Domain-aware Meta Loss Correction for Unsupe...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Guo, Xiaoqing Yang, Chen Li, Baopu Yuan, Yixuan City Univ Hong Kong Hong Kong Peoples R China Baidu USA Sunnyvale CA USA
Unsupervised domain adaptation (UDA) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain. Existing self-training based UDA approaches assign pseudo labels for target data and t... 详细信息
来源: 评论