咨询与建议

限定检索结果

文献类型

  • 19,438 篇 会议
  • 46 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 19,488 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,440 篇 工学
    • 10,282 篇 计算机科学与技术...
    • 2,395 篇 机械工程
    • 2,007 篇 软件工程
    • 813 篇 光学工程
    • 531 篇 电气工程
    • 419 篇 控制科学与工程
    • 322 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 60 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 33 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 20 篇 材料科学与工程(可...
    • 20 篇 交通运输工程
  • 3,409 篇 医学
    • 3,408 篇 临床医学
  • 1,980 篇 理学
    • 1,006 篇 数学
    • 973 篇 物理学
    • 359 篇 统计学(可授理学、...
    • 336 篇 生物学
    • 231 篇 系统科学
    • 24 篇 化学
  • 258 篇 管理学
    • 138 篇 管理科学与工程(可...
    • 122 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 农学
  • 8 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 7,893 篇 computer vision
  • 2,727 篇 training
  • 2,680 篇 pattern recognit...
  • 1,760 篇 computational mo...
  • 1,644 篇 visualization
  • 1,410 篇 cameras
  • 1,372 篇 three-dimensiona...
  • 1,327 篇 shape
  • 1,213 篇 face recognition
  • 1,207 篇 image segmentati...
  • 1,164 篇 feature extracti...
  • 1,109 篇 robustness
  • 1,087 篇 semantics
  • 983 篇 layout
  • 959 篇 object detection
  • 949 篇 computer archite...
  • 942 篇 benchmark testin...
  • 931 篇 codes
  • 902 篇 computer science
  • 859 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 161 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 106 篇 tsinghua univ pe...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 73 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 66 篇 shanghai jiao to...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 45 篇 luc van gool
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 38 篇 li stan z.
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,484 篇 英文
  • 2 篇 日文
  • 2 篇 中文
  • 1 篇 其他
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000"
19489 条 记 录,以下是4621-4630 订阅
排序:
Online Multiple Object Tracking with Cross-Task Synergy
Online Multiple Object Tracking with Cross-Task Synergy
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Guo, Song Wang, Jingya Wang, Xinchao Tao, Dacheng Univ Sydney Sydney NSW Australia ShanghaiTech Univ Shanghai Peoples R China Natl Univ Singapore Singapore Singapore Stevens Inst Technol Hoboken NJ 07030 USA
Modern online multiple object tracking (MOT) methods usually focus on two directions to improve tracking performance. One is to predict new positions in an incoming frame based on tracking information from previous fr... 详细信息
来源: 评论
HCRF-Flow: Scene Flow from Point Clouds with Continuous High-order CRFs and Position-aware Flow Embedding
HCRF-Flow: Scene Flow from Point Clouds with Continuous High...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Ruibo Li, Guosheng He, Tong Li, Fayao Shen, Chunhua Nanyang Technol Univ S Lab Singapore Singapore Nanyang Technol Univ Sch Comp Sci & Engn Singapore Singapore Univ Adelaide Adelaide SA Australia ASTAR Inst Infocomm Res Singapore Singapore
Scene flow in 3D point clouds plays an important role in understanding dynamic environments. Although significant advances have been made by deep neural networks, the performance is far from satisfactory as only per-p... 详细信息
来源: 评论
Capturing Omni-Range Context for Omnidirectional Segmentation
Capturing Omni-Range Context for Omnidirectional Segmentatio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Kailun Zhang, Jiaming Reiss, Simon Hu, Xinxin Stiefelhagen, Rainer Karlsruhe Inst Technol CV HCI Lab Karlsruhe Germany Carl Zeiss Jena Germany Huawei Technol Shenzhen Peoples R China
Convolutional Networks (ConvNets) excel at semantic segmentation and have become a vital component for perception in autonomous driving. Enabling an all-encompassing view of street-scenes, omnidirectional cameras pres... 详细信息
来源: 评论
Training Networks in Null Space of Feature Covariance for Continual Learning
Training Networks in Null Space of Feature Covariance for Co...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Shipeng Li, Xiaorong Sun, Jian Xu, Zongben Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China Natl Engn Lab Big Data Algorithm & Anal Technol Xian 710049 Peoples R China Pazhou Lab Guangzhou 510335 Guangdong Peoples R China
In the setting of continual learning, a network is trained on a sequence of tasks, and suffers from catastrophic forgetting. To balance plasticity and stability of network in continual learning, in this paper, we prop... 详细信息
来源: 评论
All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training
All Labels Are Not Created Equal: Enhancing Semi-supervision...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Nassar, Islam Herath, Samitha Abbasnejad, Ehsan Buntine, Wray Haffari, Gholamreza Monash Univ Dept Data Sci & AI Fac IT Clayton Vic Australia Univ Adelaide Australian Inst Machine Learning Adelaide SA Australia
Pseudo-labeling is a key component in semi-supervised learning (SSL). It relies on iteratively using the model to generate artificial labels for the unlabeled data to train against. A common property among its various... 详细信息
来源: 评论
The Multi-Temporal Urban Development SpaceNet Dataset
The Multi-Temporal Urban Development SpaceNet Dataset
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Van Etten, Adam Hogan, Daniel Manso, Jesus Martinez Shermeyer, Jacob Weir, Nicholas Lewis, Ryan In Q Tel CosmiQ Works Arlington VA 22003 USA Planet San Francisco CA 94107 USA Capella Space San Francisco CA USA Amazon Seattle WA USA
Satellite imagery analytics have numerous human development and disaster response applications, particularly when time series methods are involved. For example, quantifying population statistics is fundamental to 67 o... 详细信息
来源: 评论
Adaptive Image Transformer for One-Shot Object Detection
Adaptive Image Transformer for One-Shot Object Detection
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Ding-Jie Hsieh, He-Yen Liu, Tyng-Luh Acad Sinica Inst Informat Sci Taipei Taiwan Taiwan AI Labs Taipei Taiwan
One-shot object detection tackles a challenging task that aims at identifying within a target image all object instances of the same class, implied by a query image patch. The main difficulty lies in the situation tha... 详细信息
来源: 评论
Neural Side-By-Side: Predicting Human Preferences for No-Reference Super-Resolution Evaluation
Neural Side-By-Side: Predicting Human Preferences for No-Ref...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Khrulkov, Valentin Babenko, Artem Yandex Moscow Russia Natl Res Univ Higher Sch Econ Moscow Russia
Super-resolution based on deep convolutional networks is currently gaining much attention from both academia and industry. However, lack of proper evaluation measures makes it difficult to compare approaches, hamperin... 详细信息
来源: 评论
Space-Time Distillation for Video Super-Resolution
Space-Time Distillation for Video Super-Resolution
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xiao, Zeyu Fu, Xueyang Huang, Jie Cheng, Zhen Xiong, Zhiwei Univ Sci & Technol China Hefei Anhui Peoples R China
Compact video super-resolution (VSR) networks can be easily deployed on resource-limited devices, e.g., smartphones and wearable devices, but have considerable performance gaps compared with complicated VSR networks t... 详细信息
来源: 评论
UP-DETR: Unsupervised Pre-training for Object Detection with Transformers
UP-DETR: Unsupervised Pre-training for Object Detection with...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Dai, Zhigang Cai, Bolun Lin, Yugeng Chen, Junying South China Univ Technol Sch Software Engn Guangzhou Peoples R China Tencent Wechat AI Shenzhen Peoples R China South China Univ Technol Minist Educ Key Lab Big Data & Intelligent Robot Guangzhou Peoples R China
Object detection with transformers (DETR) reaches competitive performance with Faster R-CNN via a transformer encoder-decoder architecture. Inspired by the great success of pre-training transformers in natural languag... 详细信息
来源: 评论