咨询与建议

限定检索结果

文献类型

  • 19,438 篇 会议
  • 46 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 19,486 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,440 篇 工学
    • 10,282 篇 计算机科学与技术...
    • 2,395 篇 机械工程
    • 2,007 篇 软件工程
    • 813 篇 光学工程
    • 531 篇 电气工程
    • 419 篇 控制科学与工程
    • 322 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 60 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 33 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 20 篇 材料科学与工程(可...
    • 20 篇 交通运输工程
  • 3,409 篇 医学
    • 3,408 篇 临床医学
  • 1,980 篇 理学
    • 1,006 篇 数学
    • 973 篇 物理学
    • 359 篇 统计学(可授理学、...
    • 336 篇 生物学
    • 231 篇 系统科学
    • 24 篇 化学
  • 258 篇 管理学
    • 138 篇 管理科学与工程(可...
    • 122 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 农学
  • 8 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 7,893 篇 computer vision
  • 2,727 篇 training
  • 2,679 篇 pattern recognit...
  • 1,760 篇 computational mo...
  • 1,644 篇 visualization
  • 1,410 篇 cameras
  • 1,372 篇 three-dimensiona...
  • 1,327 篇 shape
  • 1,213 篇 face recognition
  • 1,207 篇 image segmentati...
  • 1,164 篇 feature extracti...
  • 1,109 篇 robustness
  • 1,087 篇 semantics
  • 983 篇 layout
  • 959 篇 object detection
  • 949 篇 computer archite...
  • 942 篇 benchmark testin...
  • 931 篇 codes
  • 902 篇 computer science
  • 859 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 161 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 106 篇 tsinghua univ pe...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 73 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 66 篇 shanghai jiao to...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 46 篇 xiaoou tang
  • 45 篇 luc van gool
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 38 篇 li stan z.
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,482 篇 英文
  • 2 篇 日文
  • 2 篇 中文
  • 1 篇 其他
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000"
19487 条 记 录,以下是4721-4730 订阅
排序:
Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds
Back-tracing Representative Points for Voting-based 3D Objec...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cheng, Bowen Sheng, Lu Shi, Shaoshuai Yang, Ming Xu, Dong Beihang Univ Coll Software Beijing Peoples R China Chinese Univ Hong Kong Hong Kong Peoples R China Univ Sydney Sydney NSW Australia
3D object detection in point clouds is a challenging vision task that benefits various applications for understanding the 3D visual world. Lots of recent research focuses on how to exploit end-to-end trainable Hough v... 详细信息
来源: 评论
Driving Everywhere with Large Language Model Policy Adaptation
Driving Everywhere with Large Language Model Policy Adaptati...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Boyi Li Yue Wang Jiageng Mao Boris Ivanovic Sushant Veer Karen Leung Marco Pavone NVIDIA University of Southern California University of Washington Stanford University
Adapting driving behavior to new environments, customs, and laws is a longstanding problem in autonomous driving, precluding the widespread deployment of autonomous vehicles (AVs). In this paper, we present LLaDA, a s... 详细信息
来源: 评论
Filter Distribution Templates in Convolutional Networks for Image Classification Tasks
Filter Distribution Templates in Convolutional Networks for ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Izquierdo-Cordova, Ramon Mayol-Cuevas, Walterio Univ Bristol Dept Comp Sci Bristol Avon England
Neural network designers have reached progressive accuracy by increasing models depth, introducing new layer types and discovering new combinations of layers. A common element in many architectures is the distribution... 详细信息
来源: 评论
Selectively Informative Description can Reduce Undesired Embedding Entanglements in Text-to-Image Personalization
Selectively Informative Description can Reduce Undesired Emb...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Jimyeong Kim Jungwon Park Wonjong Rhee Department of Intelligence and Information Seoul National University IPAI Seoul National University RICS Seoul National University
In text-to-image personalization, a timely and crucial challenge is the tendency of generated images overfitting to the biases present in the reference images. We initiate our study with a comprehensive categorization... 详细信息
来源: 评论
Federated Online Adaptation for Deep Stereo
Federated Online Adaptation for Deep Stereo
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Matteo Poggi Fabio Tosi Department of Computer Science and Engineering (DISI) Advanced Research Center on Electronic System (ARCES) University of Bologna Italy
We introduce a novel approach for adapting deep stereo networks in a collaborative manner. By building over principles of federated learning, we develop a distributed framework allowing for demanding the optimization ... 详细信息
来源: 评论
Concept Weaver: Enabling Multi-Concept Fusion in Text-to-Image Models
Concept Weaver: Enabling Multi-Concept Fusion in Text-to-Ima...
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Gihyun Kwon Simon Jenni Dingzeyu Li Joon-Young Lee Jong Chul Ye Fabian Caba Heilbron KAIST Adobe
While there has been significant progress in customizing text-to-image generation models, generating images that combine multiple personalized concepts remains challenging. In this work, we introduce Concept Weaver, a... 详细信息
来源: 评论
CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching
CFNet: Cascade and Fused Cost Volume for Robust Stereo Match...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shen, Zhelun Dai, Yuchao Rao, Zhibo Northwestern Polytech Univ Xian Peoples R China Peking Univ Beijing Peoples R China
Recently, the ever-increasing capacity of large-scale annotated datasets has led to profound progress in stereo matching. However, most of these successes are limited to a specific dataset and cannot generalize well t... 详细信息
来源: 评论
FADES: Fair Disentanglement with Sensitive Relevance
FADES: Fair Disentanglement with Sensitive Relevance
收藏 引用
conference on computer vision and pattern recognition (cvpr)
作者: Taeuk Jang Xiaoqian Wang Purdue University West Lafayette IN USA
Learning fair representation in deep learning is essential to mitigate discriminatory outcomes and enhance trustworthiness. However, previous research has been commonly established on inappropriate assumptions prone t... 详细信息
来源: 评论
Learning to Aggregate and Personalize 3D Face from In-the-Wild Photo Collection
Learning to Aggregate and Personalize 3D Face from In-the-Wi...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Zhenyu Ge, Yanhao Chen, Renwang Tai, Ying Yan, Yan Yang, Jian Wang, Chengjie Li, Jilin Huang, Feiyue Tencent Youtu Lab Shanghai Peoples R China Nanjing Univ Sci & Technol Nanjing Peoples R China
Non-parametric face modeling aims to reconstruct 3D face only from images without shape assumptions. While plausible facial details are predicted, the models tend to over-depend on local color appearance and suffer fr... 详细信息
来源: 评论
Unsupervised Multi-source Domain Adaptation Without Access to Source Data
Unsupervised Multi-source Domain Adaptation Without Access t...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ahmed, Sk Miraj Raychaudhuri, Dripta S. Paul, Sujoy Oymak, Samet Roy-Chowdhury, Amit K. Univ Calif Riverside Riverside CA 92521 USA Google Res Mountain View CA USA UC Riverside Riverside CA USA
Unsupervised Domain Adaptation (UDA) aims to learn a predictor model for an unlabeled domain by transferring knowledge from a separate labeled source domain. However, most of these conventional UDA approaches make the... 详细信息
来源: 评论