咨询与建议

限定检索结果

文献类型

  • 19,438 篇 会议
  • 46 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 19,488 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,440 篇 工学
    • 10,282 篇 计算机科学与技术...
    • 2,395 篇 机械工程
    • 2,007 篇 软件工程
    • 813 篇 光学工程
    • 531 篇 电气工程
    • 419 篇 控制科学与工程
    • 322 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 60 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 33 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 20 篇 材料科学与工程(可...
    • 20 篇 交通运输工程
  • 3,409 篇 医学
    • 3,408 篇 临床医学
  • 1,980 篇 理学
    • 1,006 篇 数学
    • 973 篇 物理学
    • 359 篇 统计学(可授理学、...
    • 336 篇 生物学
    • 231 篇 系统科学
    • 24 篇 化学
  • 258 篇 管理学
    • 138 篇 管理科学与工程(可...
    • 122 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 农学
  • 8 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 7,893 篇 computer vision
  • 2,727 篇 training
  • 2,680 篇 pattern recognit...
  • 1,760 篇 computational mo...
  • 1,644 篇 visualization
  • 1,410 篇 cameras
  • 1,372 篇 three-dimensiona...
  • 1,327 篇 shape
  • 1,213 篇 face recognition
  • 1,207 篇 image segmentati...
  • 1,164 篇 feature extracti...
  • 1,109 篇 robustness
  • 1,087 篇 semantics
  • 983 篇 layout
  • 959 篇 object detection
  • 949 篇 computer archite...
  • 942 篇 benchmark testin...
  • 931 篇 codes
  • 902 篇 computer science
  • 859 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 161 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 106 篇 tsinghua univ pe...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 73 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 66 篇 shanghai jiao to...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 45 篇 luc van gool
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 38 篇 li stan z.
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,484 篇 英文
  • 2 篇 日文
  • 2 篇 中文
  • 1 篇 其他
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000"
19489 条 记 录,以下是4861-4870 订阅
排序:
CRAFT Objects from Images  29
CRAFT Objects from Images
收藏 引用
2016 ieee conference on computer vision and pattern recognition (cvpr)
作者: Yang, Bin Yang, Junjie Lei, Zhen Li, Stan Z. Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing Peoples R China Tsinghua Univ Beijing Peoples R China
Object detection is a fundamental problem in image understanding. One popular solution is the R-CNN framework [15] and its fast versions [14, 27]. They decompose the object detection problem into two cascaded easier t... 详细信息
来源: 评论
TCTrack: Temporal Contexts for Aerial Tracking
TCTrack: Temporal Contexts for Aerial Tracking
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Cao, Ziang Huang, Ziyuan Pan, Liang Zhang, Shiwei Liu, Ziwei Fu, Changhong Tongji Univ Shanghai Peoples R China Natl Univ Singapore Singapore Singapore Nanyang Technol Univ S Lab Singapore Singapore Alibaba Grp DAMO Acad Hangzhou Peoples R China
Temporal contexts among consecutive frames are far from being fully utilized in existing visual trackers. In this work, we present TCTrack(1), a comprehensive framework to fully exploit temporal contexts for aerial tr... 详细信息
来源: 评论
Failure Modes of Domain Generalization Algorithms
Failure Modes of Domain Generalization Algorithms
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Galstyan, Tigran Harutyunyan, Hrayr Khachatrian, Hrant Ver Steeg, Greg Galstyan, Aram YerevaNN Yerevan Armenia USC Informat Sci Inst Marina Del Rey CA USA Russian Armenian Univ Yerevan Armenia Yerevan State Univ Yerevan Armenia
Domain generalization algorithms use training data from multiple domains to learn models that generalize well to unseen domains. While recently proposed benchmarks demonstrate that most of the existing algorithms do n... 详细信息
来源: 评论
Unbiased Teacher v2: Semi-supervised Object Detection for Anchor-free and Anchor-based Detectors
Unbiased Teacher v2: Semi-supervised Object Detection for An...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Yen-Cheng Ma, Chih-Yao Kira, Zsolt Georgia Inst Technol Atlanta GA 30332 USA Meta Menlo Pk CA USA
With the recent development of Semi-Supervised Object Detection (SS-OD) techniques, object detectors can be improved by using a limited amount of labeled data and abundant unlabeled data. However, there are still two ... 详细信息
来源: 评论
DynTypo: Example-based Dynamic Text Effects Transfer  32
DynTypo: Example-based Dynamic Text Effects Transfer
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Men, Yifang Lian, Zhouhui Tang, Yingmin Xiao, Jianguo Peking Univ Inst Comp Sci & Technol Beijing Peoples R China
In this paper, we present a novel approach for dynamic text effects transfer by using example-based texture synthesis. In contrast to previous works that require an input video of the target to provide motion guidance... 详细信息
来源: 评论
On Generalizing Beyond Domains in Cross-Domain Continual Learning
On Generalizing Beyond Domains in Cross-Domain Continual Lea...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Simon, Christian Faraki, Masoud Tsai, Yi-Hsuan Yu, Xiang Schulter, Samuel Suh, Yumin Harandi, Mehrtash Chandraker, Manmohan Australian Natl Univ Canberra ACT Australia NEC Labs Amer Princeton NJ USA Monash Univ Melbourne Vic Australia Univ Calif San Diego San Diego CA USA Data61 Sydney NSW Australia Phiar Technol Redwood City CA USA
Humans have the ability to accumulate knowledge of new tasks in varying conditions, but deep neural networks often suffer from catastrophic forgetting of previously learned knowledge after learning a new task. Many re... 详细信息
来源: 评论
Surface Reconstruction from Normals: A Robust DGP-based Discontinuity Preservation Approach  32
Surface Reconstruction from Normals: A Robust DGP-based Disc...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xie, Wuyuan Wang, Miaohui Wei, Mingqiang Jiang, Jianmin Qin, Jing Shenzhen Univ SZU Coll Comp & Software Engn Shenzhen Peoples R China SZU Coll Informat Engn Guangdong Key Lab Intelligent Informat Proc Shenzhen Peoples R China Nanjing Univ Aeronaut & Astronaut Sch Comp Sci & Technol Nanjing Peoples R China Hong Kong Polytech Univ Sch Nursing Hong Kong Peoples R China
In 3D surface reconstruction from normals, discontinuity preservation is an important but challenging task. However, existing studies fail to address the discontinuous normal maps by enforcing the surface integrabilit... 详细信息
来源: 评论
PA3D: Pose-Action 3D Machine for Video recognition  32
PA3D: Pose-Action 3D Machine for Video Recognition
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yan, An Wang, Yali Li, Zhifeng Qiao, Yu Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen Key Lab Comp Vis & Pattern Recognit SIAT SenseTime Joint Lab Shenzhen Peoples R China Tencent AI Lab Bellevue WA USA Univ Calif San Diego La Jolla CA 92093 USA Chinese Univ Hong Kong Hong Kong Peoples R China
Recent studies have witnessed the successes of using 3D CNNs for video action ***, most 3D models are built upon RGB and opticalflow streams, which may not fully exploit pose dynamics, i.e., an important cue of modeli... 详细信息
来源: 评论
GLID: Pre-training a Generalist Encoder-Decoder vision Model
GLID: Pre-training a Generalist Encoder-Decoder Vision Model
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Jihao Zheng, Jinliang Liu, Yu Li, Hongsheng CUHK MMLab Hong Kong Peoples R China SenseTime Res Hong Kong Peoples R China Shanghai AI Lab Shanghai Peoples R China CPII InnoHK Hong Kong Peoples R China Tsinghua Univ Inst AI Ind Res AIR Shanghai Peoples R China
This paper proposes a GeneraLIst encoder-Decoder (GLID) pre-training method for better handling various downstream computer vision tasks. While self-supervised pre-training approaches, e.g., Masked Autoencoder, have s... 详细信息
来源: 评论
Improving the Transferability of Targeted Adversarial Examples through Object-Based Diverse Input
Improving the Transferability of Targeted Adversarial Exampl...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Byun, Junyoung Cho, Seungju Kwon, Myung-Joon Kim, Hee-Seon Kim, Changick Korea Adv Inst Sci & Technol KAIST Daejeon South Korea
The transferability of adversarial examples allows the deception on black-box models, and transfer-based targeted attacks have attracted a lot of interest due to their practical applicability. To maximize the transfer... 详细信息
来源: 评论