咨询与建议

限定检索结果

文献类型

  • 19,438 篇 会议
  • 46 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 19,488 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,440 篇 工学
    • 10,282 篇 计算机科学与技术...
    • 2,395 篇 机械工程
    • 2,007 篇 软件工程
    • 813 篇 光学工程
    • 531 篇 电气工程
    • 419 篇 控制科学与工程
    • 322 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 60 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 33 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 20 篇 材料科学与工程(可...
    • 20 篇 交通运输工程
  • 3,409 篇 医学
    • 3,408 篇 临床医学
  • 1,980 篇 理学
    • 1,006 篇 数学
    • 973 篇 物理学
    • 359 篇 统计学(可授理学、...
    • 336 篇 生物学
    • 231 篇 系统科学
    • 24 篇 化学
  • 258 篇 管理学
    • 138 篇 管理科学与工程(可...
    • 122 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 农学
  • 8 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 7,893 篇 computer vision
  • 2,727 篇 training
  • 2,680 篇 pattern recognit...
  • 1,760 篇 computational mo...
  • 1,644 篇 visualization
  • 1,410 篇 cameras
  • 1,372 篇 three-dimensiona...
  • 1,327 篇 shape
  • 1,213 篇 face recognition
  • 1,207 篇 image segmentati...
  • 1,164 篇 feature extracti...
  • 1,109 篇 robustness
  • 1,087 篇 semantics
  • 983 篇 layout
  • 959 篇 object detection
  • 949 篇 computer archite...
  • 942 篇 benchmark testin...
  • 931 篇 codes
  • 902 篇 computer science
  • 859 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 161 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 106 篇 tsinghua univ pe...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 73 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 66 篇 shanghai jiao to...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 45 篇 luc van gool
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 38 篇 li stan z.
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,484 篇 英文
  • 2 篇 日文
  • 2 篇 中文
  • 1 篇 其他
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000"
19489 条 记 录,以下是4901-4910 订阅
排序:
Prefix Conditioning Unifies Language and Label Supervision
Prefix Conditioning Unifies Language and Label Supervision
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Saito, Kuniaki Sohn, Kihyuk Zhang, Xiang Li, Chun-Liang Lee, Chen-Yu Saenko, Kate Pfister, Tomas Boston Univ Boston MA 02215 USA Google Cloud AI Res Mountain View CA USA Google Res Mountain View CA USA MIT IBM Watson Iab Cambridge MA USA
Pretraining visual models on web-scale image-caption datasets has recently emerged as a powerful alternative to traditional pretraining on image classification data. Image-caption datasets are more "open-domain&q... 详细信息
来源: 评论
SelfD: Self-Learning Large-Scale Driving Policies From the Web
SelfD: Self-Learning Large-Scale Driving Policies From the W...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Jimuyang Zhu, Ruizhao Ohn-Bar, Eshed Boston Univ Boston MA 02215 USA
Effectively utilizing the vast amounts of ego-centric navigation data that is freely available on the internet can advance generalized intelligent systems, i.e., to robustly scale across perspectives, platforms, envir... 详细信息
来源: 评论
Visual-Semantic Matching by Exploring High-Order Attention and Distraction
Visual-Semantic Matching by Exploring High-Order Attention a...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Yongzhi Zhang, Duo Mu, Yadong Peking Univ Ctr Data Sci Beijing Peoples R China Peking Univ EECS Beijing Peoples R China Peking Univ Wangxuan Inst Comp Technol Beijing Peoples R China
Cross-modality semantic matching is a vital task in computer vision and has attracted increasing attention in recent years. Existing methods mainly explore object-based alignment between image objects and text words. ... 详细信息
来源: 评论
Are Cars Just 3D Boxes? - Jointly Estimating the 3D Shape of Multiple Objects  27
Are Cars Just 3D Boxes? - Jointly Estimating the 3D Shape of...
收藏 引用
27th ieee conference on computer vision and pattern recognition (cvpr)
作者: Zia, M. Zeeshan Stark, Michael Schindler, Konrad Swiss Fed Inst Technol Photogrammetry & Remote Sensing Zurich Switzerland Stanford Univ Stanford CA 94305 USA Max Planck Inst Informat Munich Germany Imperial Coll London Robot Vis London England
Current systems for scene understanding typically represent objects as 2D or 3D bounding boxes. While these representations have proven robust in a variety of applications, they provide only coarse approximations to t... 详细信息
来源: 评论
Iterative Visual Reasoning Beyond Convolutions  31
Iterative Visual Reasoning Beyond Convolutions
收藏 引用
31st ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Xinlei Li, Li-Jia Li Fei-Fei Gupta, Abhinav Carnegie Mellon Univ Pittsburgh PA 15213 USA Google Mountain View CA 94043 USA
We present a novel framework for iterative visual reasoning. Our framework goes beyond current recognition systems that lack the capability to reason beyond stack of convolutions. The framework consists of two core mo... 详细信息
来源: 评论
Deep Unlearning via Randomized Conditionally Independent Hessians
Deep Unlearning via Randomized Conditionally Independent Hes...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Mehta, Ronak Pal, Sourav Singh, Vikas Ravi, Sathya N. Univ Wisconsin Madison WI 53706 USA Univ Illinois Chicago IL USA
Recent legislation has led to interest in machine unlearning, i.e., removing specific training samples from a predictive model as if they never existed in the training dataset. Unlearning may also be required due to c... 详细信息
来源: 评论
Context Modeling in 3D Human Pose Estimation: A Unified Perspective
Context Modeling in 3D Human Pose Estimation: A Unified Pers...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Ma, Xiaoxuan Su, Jiajun Wang, Chunyu Ci, Hai Wang, Yizhou Peking Univ Ctr Frontiers Comp Studies Dept Comp Sci Beijing Peoples R China Peking Univ Ctr Data Sci Adv Inst Info Tech Beijing Peoples R China Beijing Film Acad Adv Innovat Ctr Future Visual Entertainment AICFV Beijing Peoples R China Microsoft Res Asia Beijing Peoples R China Deepwise AI Lab Beijing Peoples R China
Estimating 3D human pose from a single image suffers from severe ambiguity since multiple 3D joint configurations may have the same 2D projection. The state-of-the-art methods often rely on context modeling methods su... 详细信息
来源: 评论
Learning View-Disentangled Human Pose Representation by Contrastive Cross-View Mutual Information Maximization
Learning View-Disentangled Human Pose Representation by Cont...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Long Wang, Yuxiao Zhao, Jiaping Yuan, Liangzhe Sun, Jennifer J. Schroff, Florian Adam, Hartwig Peng, Xi Metaxas, Dimitris Liu, Ting Rutgers State Univ New Brunswick NJ 08901 USA Google Res Mountain View CA USA CALTECH Pasadena CA 91125 USA Univ Delaware Newark DE 19716 USA Google Mountain View CA 94043 USA
We introduce a novel representation learning method to disentangle pose-dependent as well as view-dependent factors from 2D human poses. The method trains a network using cross-view mutual information maximization (CV... 详细信息
来源: 评论
recognition BY USING AN ACTIVE SPACE-VARIANT SENSOR
RECOGNITION BY USING AN ACTIVE SPACE-VARIANT SENSOR
收藏 引用
1994 ieee computer-Society conference on computer vision and pattern recognition
作者: TISTARELLI, M UNIV GENOA DISTINTEGRATED ADV ROBOT LABI-16145 GENOAITALY
The problem of object recognition is addressed. In the literature this task has been generally considered in a 'passive' perspective, where everything is static and there is no definite relation between the ob... 详细信息
来源: 评论
CosFace: Large Margin Cosine Loss for Deep Face recognition  31
CosFace: Large Margin Cosine Loss for Deep Face Recognition
收藏 引用
31st ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Hao Wang, Yitong Zhou, Zheng Ji, Xing Gong, Dihong Zhou, Jingchao Li, Zhifeng Liu, Wei Tencent AI Lab Bellevue WA 98004 USA
Face recognition has made extraordinary progress owing to the advancement of deep convolutional neural networks (CNNs). The central task of face recognition, including face verification and identification, involves fa... 详细信息
来源: 评论