咨询与建议

限定检索结果

文献类型

  • 19,438 篇 会议
  • 46 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 19,488 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,440 篇 工学
    • 10,282 篇 计算机科学与技术...
    • 2,395 篇 机械工程
    • 2,007 篇 软件工程
    • 813 篇 光学工程
    • 531 篇 电气工程
    • 419 篇 控制科学与工程
    • 322 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 60 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 33 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 20 篇 材料科学与工程(可...
    • 20 篇 交通运输工程
  • 3,409 篇 医学
    • 3,408 篇 临床医学
  • 1,980 篇 理学
    • 1,006 篇 数学
    • 973 篇 物理学
    • 359 篇 统计学(可授理学、...
    • 336 篇 生物学
    • 231 篇 系统科学
    • 24 篇 化学
  • 258 篇 管理学
    • 138 篇 管理科学与工程(可...
    • 122 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 农学
  • 8 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 7,893 篇 computer vision
  • 2,727 篇 training
  • 2,680 篇 pattern recognit...
  • 1,760 篇 computational mo...
  • 1,644 篇 visualization
  • 1,410 篇 cameras
  • 1,372 篇 three-dimensiona...
  • 1,327 篇 shape
  • 1,213 篇 face recognition
  • 1,207 篇 image segmentati...
  • 1,164 篇 feature extracti...
  • 1,109 篇 robustness
  • 1,087 篇 semantics
  • 983 篇 layout
  • 959 篇 object detection
  • 949 篇 computer archite...
  • 942 篇 benchmark testin...
  • 931 篇 codes
  • 902 篇 computer science
  • 859 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 161 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 106 篇 tsinghua univ pe...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 73 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 66 篇 shanghai jiao to...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 45 篇 luc van gool
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 38 篇 li stan z.
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,484 篇 英文
  • 2 篇 日文
  • 2 篇 中文
  • 1 篇 其他
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000"
19489 条 记 录,以下是4911-4920 订阅
排序:
Transferring Cross-domain Knowledge for Video Sign Language recognition
Transferring Cross-domain Knowledge for Video Sign Language ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Dongxu Yu, Xin Xu, Chenchen Petersson, Lars Li, Hongdong Australian Natl Univ Canberra ACT Australia Australian Ctr Robot Vis ACRV Brisbane Qld Australia Univ Technol Sydney Sydney NSW Australia DATA61 CSIRO Sydney NSW Australia
Word-level sign language recognition (WSLR) is a fundamental task in sign language interpretation. It requires models to recognize isolated sign words from videos. However, annotating WSLR data needs expert knowledge,... 详细信息
来源: 评论
Weakly-supervised Deep Convolutional Neural Network Learning for Facial Action Unit Intensity Estimation  31
Weakly-supervised Deep Convolutional Neural Network Learning...
收藏 引用
31st ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Yong Dong, Weiming Hu, Bao-Gang Ji, Qiang CASIA Natl Lab Pattern Recognit Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Rensselaer Polytech Inst Troy NY 12181 USA
Facial action unit (AU) intensity estimation plays an important role in affective computing and human-computer interaction. Recent works have introduced deep neural networks for AU intensity estimation, but they requi... 详细信息
来源: 评论
Adaptive Aggregation Networks for Class-Incremental Learning
Adaptive Aggregation Networks for Class-Incremental Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Yaoyao Schiele, Bernt Sun, Qianru Saarland Informat Campus Max Planck Inst Informat Saarbrucken Germany Singapore Management Univ Sch Comp & Informat Syst Singapore Singapore
Class-Incremental Learning (CIL) aims to learn a classification model with the number of classes increasing phase-by-phase. An inherent problem in CIL is the stability-plasticity dilemma between the learning of old an... 详细信息
来源: 评论
Prior Based Human Completion
Prior Based Human Completion
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhao, Zibo Liu, Wen Xu, Yanyu Chen, Xianing Luo, Weixin Jin, Lei Zhu, Bohui Liu, Tong Zhao, Binqiang Gao, Shenghua ShanghaiTech Univ Shanghai Peoples R China ASTAR Inst High Performance Comp Singapore Singapore Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China Alibaba Grp Hangzhou Peoples R China Taobao Hangzhou Peoples R China
We study a very challenging task, human image completion, which tries to recover the human body part with a reasonable human shape from the corrupted region. Since each human body part is unique, it is infeasible to r... 详细信息
来源: 评论
Room-and-Object Aware Knowledge Reasoning for Remote Embodied Referring Expression
Room-and-Object Aware Knowledge Reasoning for Remote Embodie...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gao, Chen Chen, Jinyu Liu, Si Wang, Luting Zhang, Qiong Wu, Qi Beihang Univ Inst Artificial Intelligence Beijing Peoples R China Univ Adelaide Adelaide SA Australia Xiaomi Inc Xiaomi AI Lab Beijing Peoples R China
The Remote Embodied Referring Expression (REVERIE) is a recently raised task that requires an agent to navigate to and localise a referred remote object according to a high-level language instruction. Different from r... 详细信息
来源: 评论
A regularized spectral algorithm for Hidden Markov Models with applications in computer vision
A regularized spectral algorithm for Hidden Markov Models wi...
收藏 引用
2012 ieee conference on computer vision and pattern recognition, cvpr 2012
作者: Minh, Ha Quang Cristani, Marco Perina, Alessandro Murino, Vittorio Genoa 16163 Italy Microsoft Research WA United States
Hidden Markov Models (HMMs) are among the most important and widely used techniques to deal with sequential or temporal data. Their application in computer vision ranges from action/gesture recognition to videosurveil... 详细信息
来源: 评论
SoftGroup for 3D Instance Segmentation on Point Clouds
SoftGroup for 3D Instance Segmentation on Point Clouds
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Thang Vu Kim, Kookhoi Luu, Tung M. Thanh Nguyen Yoo, Chang D. Korea Adv Inst Sci & Technol KAIST Daejeon South Korea
Existing state-of-the-art 3D instance segmentation methods perform semantic segmentation followed by grouping. The hard predictions are made when performing semantic segmentation such that each point is associated wit... 详细信息
来源: 评论
Learning Bayesian Sparse Networks with Full Experience Replay for Continual Learning
Learning Bayesian Sparse Networks with Full Experience Repla...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yan, Qingsen Gong, Dong Liu, Yuhang van den Hengel, Anton Shi, Javen Qinfeng Univ Adelaide Australian Inst Machine Learning Adelaide SA Australia Univ New South Wales Sch Comp Sci & Engn Sydney NSW Australia
Continual Learning (CL) methods aim to enable machine learning models to learn new tasks without catastrophic forgetting of those that have been previously mastered. Existing CL approaches often keep a buffer of previ... 详细信息
来源: 评论
Learning Neural Representation of Camera Pose with Matrix Representation of Pose Shift via View Synthesis
Learning Neural Representation of Camera Pose with Matrix Re...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhu, Yaxuan Gao, Ruiqi Huang, Siyuan Zhu, Song-Chun Wu, Ying Nian Univ Calif Los Angeles UCLA Dept Stat Los Angeles CA 90095 USA
How to effectively represent camera pose is an essential problem in 3D computer vision, especially in tasks such as camera pose regression and novel view synthesis. Traditionally, 3D position of the camera is represen... 详细信息
来源: 评论
Rank-One Prior: Toward Real-Time Scene Recovery
Rank-One Prior: Toward Real-Time Scene Recovery
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Liu, Jun Liu, Ryan Wen Sun, Jianing Zeng, Tieyong Northeast Normal Univ Sch Math & Stat Changchun Peoples R China Northeast Normal Univ Key Lab Appl Stat MOE Changchun Peoples R China Wuhan Univ Technol Sch Nav Wuhan Peoples R China Northeast Normal Univ Jilin Natl Appl Math Ctr Changchun Peoples R China Chinese Univ Hong Kong Dept Math Shatin Hong Kong Peoples R China
Scene recovery is a fundamental imaging task for several practical applications, e.g., video surveillance and autonomous vehicles, etc. To improve visual quality under different weather/imaging conditions, we propose ... 详细信息
来源: 评论