咨询与建议

限定检索结果

文献类型

  • 19,438 篇 会议
  • 46 篇 期刊文献
  • 5 册 图书

馆藏范围

  • 19,488 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,440 篇 工学
    • 10,282 篇 计算机科学与技术...
    • 2,395 篇 机械工程
    • 2,007 篇 软件工程
    • 813 篇 光学工程
    • 531 篇 电气工程
    • 419 篇 控制科学与工程
    • 322 篇 信息与通信工程
    • 210 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 73 篇 电子科学与技术(可...
    • 70 篇 生物工程
    • 60 篇 仪器科学与技术
    • 38 篇 建筑学
    • 36 篇 土木工程
    • 33 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 26 篇 安全科学与工程
    • 20 篇 材料科学与工程(可...
    • 20 篇 交通运输工程
  • 3,409 篇 医学
    • 3,408 篇 临床医学
  • 1,980 篇 理学
    • 1,006 篇 数学
    • 973 篇 物理学
    • 359 篇 统计学(可授理学、...
    • 336 篇 生物学
    • 231 篇 系统科学
    • 24 篇 化学
  • 258 篇 管理学
    • 138 篇 管理科学与工程(可...
    • 122 篇 图书情报与档案管...
    • 27 篇 工商管理
  • 19 篇 法学
    • 19 篇 社会学
  • 14 篇 农学
  • 8 篇 教育学
  • 7 篇 经济学
  • 3 篇 军事学
  • 3 篇 艺术学

主题

  • 7,893 篇 computer vision
  • 2,727 篇 training
  • 2,680 篇 pattern recognit...
  • 1,760 篇 computational mo...
  • 1,644 篇 visualization
  • 1,410 篇 cameras
  • 1,372 篇 three-dimensiona...
  • 1,327 篇 shape
  • 1,213 篇 face recognition
  • 1,207 篇 image segmentati...
  • 1,164 篇 feature extracti...
  • 1,109 篇 robustness
  • 1,087 篇 semantics
  • 983 篇 layout
  • 959 篇 object detection
  • 949 篇 computer archite...
  • 942 篇 benchmark testin...
  • 931 篇 codes
  • 902 篇 computer science
  • 859 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 161 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 110 篇 microsoft resear...
  • 106 篇 tsinghua univ pe...
  • 103 篇 zhejiang univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 73 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 72 篇 peking univ peop...
  • 72 篇 university of ch...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 66 篇 shanghai jiao to...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 59 篇 timofte radu
  • 48 篇 yang yi
  • 47 篇 xiaoou tang
  • 45 篇 luc van gool
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 qi tian
  • 38 篇 li stan z.
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,484 篇 英文
  • 2 篇 日文
  • 2 篇 中文
  • 1 篇 其他
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2000"
19489 条 记 录,以下是4991-5000 订阅
排序:
Playable Environments: Video Manipulation in Space and Time
Playable Environments: Video Manipulation in Space and Time
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Menapace, Willi Lathuiliere, Stephane Siarohin, Aliaksandr Theobalt, Christian Tulyakov, Sergey Golyanik, Vladislav Ricci, Elisa Univ Trento Trento Italy Inst Polytech Paris LTCI Telecom Paris Paris France MPI Informat SIC Saarbrucken Germany Snap Inc Santa Monica CA USA Fdn Bruno Kessler Povo Italy
We present Playable Environments-a new representation for interactive video generation and manipulation in space and time. With a single image at inference time, our novel framework allows the user to move objects in ... 详细信息
来源: 评论
DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions
DeCoTR: Enhancing Depth Completion with 2D and 3D Attentions
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shi, Yunxiao Singh, Manish Kumar Cai, Hong Porikli, Fatih Qualcomm AI Res San Diego CA 92121 USA
In this paper, we introduce a novel approach that harnesses both 2D and 3D attentions to enable highly accurate depth completion without requiring iterative spatial propagations. Specifically, we first enhance a basel... 详细信息
来源: 评论
Hierarchical Video Prediction using Relational Layouts for Human-Object Interactions
Hierarchical Video Prediction using Relational Layouts for H...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Bodla, Navaneeth Shrivastava, Gaurav Chellappa, Rama Shrivastava, Abhinav Univ Maryland College Pk MD 20742 USA Johns Hopkins Univ Baltimore MD USA
Learning to model and predict how humans interact with objects while performing an action is challenging, and most of the existing video prediction models are ineffective in modeling complicated human-object interacti... 详细信息
来源: 评论
Propagation Regularizer for Semi-supervised Learning with Extremely Scarce Labeled Samples
Propagation Regularizer for Semi-supervised Learning with Ex...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kim, Noo-ri Lee, Jee-Hyong Sungkyunkwan Univ Dept Elect & Comp Engn 2066 Seobu Ro Suwon 16419 Gyeonggi Do South Korea
Semi-supervised learning (SSL) is a method to make better models using a large number of easily accessible unlabeled data along with a small number of labeled data obtained at a high cost. Most of existing SSL studies... 详细信息
来源: 评论
Cross-Modal Relationship Inference for Grounding Referring Expressions  32
Cross-Modal Relationship Inference for Grounding Referring E...
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yang, Sibei Li, Guanbin Yu, Yizhou Univ Hong Kong Hong Kong Peoples R China Sun Yat sen Univ Guangzhou Guangdong Peoples R China Deepwise AI Lab Beijing Peoples R China
Grounding referring expressions is a fundamental yet challenging task facilitating human-machine communication in the physical world. It locates the target object in an image on the basis of the comprehension of the r... 详细信息
来源: 评论
vision Transformer with Deformable Attention
Vision Transformer with Deformable Attention
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xia, Zhuofan Pan, Xuran Song, Shiji Li, Li Erran Huang, Gao Tsinghua Univ Dept Automat BNRist Beijing Peoples R China Amazon AWS AI San Francisco CA USA Beijing Acad Artificial Intelligence Beijing Peoples R China
Transformers have recently shown superior performances on various vision tasks. The large, sometimes even global, receptive field endows Transformer models with higher representation power over their CNN counterparts.... 详细信息
来源: 评论
Pre-Trained Image Processing Transformer
Pre-Trained Image Processing Transformer
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Chen, Hanting Wang, Yunhe Guo, Tianyu Xu, Chang Deng, Yiping Liu, Zhenhua Ma, Siwei Xu, Chunjing Xu, Chao Gao, Wen Peking Univ Dept Machine Intelligence Key Lab Machine Percept MOE Beijing Peoples R China Huawei Technol Noahs Ark Lab Shenzhen Peoples R China Univ Sydney Fac Engn Sch Comp Sci Sydney NSW Australia Huawei Technol Cent Software Inst Shenzhen Peoples R China Peking Univ Sch Elect Engn & Comp Sci Inst Digital Media Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China
As the computing power of modern hardware is increasing strongly, pre-trained deep learning models (e.g., BERT, GPT-3) learned on large-scale datasets have shown their effectiveness over conventional methods. The big ... 详细信息
来源: 评论
Leveraging per Image-Token Consistency for vision-Language Pre-training
Leveraging per Image-Token Consistency for Vision-Language P...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Gou, Yunhao Ko, Tom Yang, Hansi Kwok, James Zhang, Yu Wang, Mingxuan Southern Univ Sci & Technol Shenzhen Peoples R China Hong Kong Univ Sci & Technol Hong Kong Peoples R China ByteDance Ai Lab Beijing Peoples R China Peng Cheng Lab Shenzhen Peoples R China
Most existing vision-language pre-training (VLP) approaches adopt cross-modal masked language modeling (CMLM) to learn vision-language associations. However, we find that CMLM is insufficient for this purpose accordin... 详细信息
来源: 评论
DVC: An End-to-end Deep Video Compression Framework  32
DVC: An End-to-end Deep Video Compression Framework
收藏 引用
32nd ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lu, Guo Ouyang, Wanli Xu, Dong Zhang, Xiaoyun Cai, Chunlei Gao, Zhiyong Shanghai Jiao Tong Univ Shanghai Peoples R China Univ Sydney SenseTime Comp Vis Res Grp Sydney NSW Australia Univ Sydney Sydney NSW Australia
Conventional video compression approaches use the predictive coding architecture and encode the corresponding motion information and residual information. In this paper, taking advantage of both classical architecture... 详细信息
来源: 评论
Learning to Segment Actions from Visual and Language Instructions via Differentiable Weak Sequence Alignment
Learning to Segment Actions from Visual and Language Instruc...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Shen, Yuhan Wang, Lu Elhamifar, Ehsan Northeastern Univ Boston MA 02115 USA Univ Michigan Ann Arbor MI 48109 USA
We address the problem of unsupervised localization of task-relevant actions (key-steps) and feature learning in instructional videos using both visual and language instructions. Our key observation is that the sequen... 详细信息
来源: 评论