咨询与建议

限定检索结果

文献类型

  • 19,636 篇 会议
  • 48 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 19,686 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,586 篇 工学
    • 10,354 篇 计算机科学与技术...
    • 2,449 篇 机械工程
    • 2,010 篇 软件工程
    • 815 篇 光学工程
    • 598 篇 电气工程
    • 433 篇 控制科学与工程
    • 329 篇 信息与通信工程
    • 211 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 75 篇 生物工程
    • 69 篇 电子科学与技术(可...
    • 67 篇 仪器科学与技术
    • 37 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 交通运输工程
    • 21 篇 化学工程与技术
    • 20 篇 材料科学与工程(可...
  • 3,435 篇 医学
    • 3,434 篇 临床医学
  • 1,980 篇 理学
    • 1,001 篇 数学
    • 972 篇 物理学
    • 356 篇 统计学(可授理学、...
    • 340 篇 生物学
    • 235 篇 系统科学
    • 26 篇 化学
  • 262 篇 管理学
    • 141 篇 管理科学与工程(可...
    • 124 篇 图书情报与档案管...
    • 26 篇 工商管理
  • 19 篇 法学
  • 12 篇 农学
  • 8 篇 教育学
  • 6 篇 经济学
  • 4 篇 艺术学
  • 2 篇 军事学

主题

  • 7,948 篇 computer vision
  • 2,773 篇 training
  • 2,711 篇 pattern recognit...
  • 1,771 篇 computational mo...
  • 1,660 篇 visualization
  • 1,426 篇 cameras
  • 1,383 篇 three-dimensiona...
  • 1,345 篇 shape
  • 1,236 篇 face recognition
  • 1,222 篇 feature extracti...
  • 1,213 篇 image segmentati...
  • 1,117 篇 robustness
  • 1,094 篇 semantics
  • 977 篇 layout
  • 960 篇 object detection
  • 946 篇 benchmark testin...
  • 944 篇 computer archite...
  • 931 篇 codes
  • 896 篇 computer science
  • 861 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 159 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 103 篇 tsinghua univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 73 篇 university of ch...
  • 72 篇 peking univ peop...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 60 篇 timofte radu
  • 48 篇 yang yi
  • 48 篇 luc van gool
  • 46 篇 xiaoou tang
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 li stan z.
  • 39 篇 qi tian
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,681 篇 英文
  • 3 篇 中文
  • 2 篇 日文
  • 1 篇 其他
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015"
19687 条 记 录,以下是671-680 订阅
排序:
DisWOT: Student Architecture Search for Distillation WithOut Training
DisWOT: Student Architecture Search for Distillation WithOut...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Dong, Peijie Li, Lujun Wei, Zimian Natl Univ Def Technol Changsha Peoples R China Chinese Acad Sci Beijing 100864 Peoples R China
Knowledge distillation (KD) is an effective training strategy to improve the lightweight student models under the guidance of cumbersome teachers. However, the large architecture difference across the teacher-student ... 详细信息
来源: 评论
Learning Debiased Representations via Conditional Attribute Interpolation
Learning Debiased Representations via Conditional Attribute ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Zhang, Yi-Kai Wang, Qi-Wei Zhan, De-Chuan Ye, Han-Jia Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China
An image is usually described by more than one attribute like "shape" and "color". When a dataset is biased, i.e., most samples have attributes spuriously correlated with the target label, a Deep N... 详细信息
来源: 评论
Learning to Detect and Segment for Open Vocabulary Object Detection
Learning to Detect and Segment for Open Vocabulary Object De...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Tao Sichuan Univ Chengdu Peoples R China
Open vocabulary object detection has been greatly advanced by the recent development of vision-language pretrained model, which helps recognize novel objects with only semantic categories. The prior works mainly focus... 详细信息
来源: 评论
Generalizable Implicit Neural Representations via Instance pattern Composers
Generalizable Implicit Neural Representations via Instance P...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kim, Chiheon Lee, Doyup Kim, Saehoon Cho, Minsu Han, Wook-Shin Kakao Brain Seongnam South Korea POSTECH Pohang South Korea
Despite recent advances in implicit neural representations (INRs), it remains challenging for a coordinate-based multi-layer perceptron (MLP) of INRs to learn a common representation across data instances and generali... 详细信息
来源: 评论
Improving Robustness of vision Transformers by Reducing Sensitivity to Patch Corruptions
Improving Robustness of Vision Transformers by Reducing Sens...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Guo, Yong Stutz, David Schiele, Bernt Saarland Informat Campus Max Planck Inst Informat Saarbrucken Germany
Despite their success, vision transformers still remain vulnerable to image corruptions, such as noise or blur. Indeed, we find that the vulnerability mainly stems from the unstable self-attention mechanism, which is ... 详细信息
来源: 评论
Segment Anything Model for Road Network Graph Extraction
Segment Anything Model for Road Network Graph Extraction
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Hetang, Congrui Xue, Haoru Le, Cindy Yue, Tianwei Wang, Wenping He, Yihui Carnegie Mellon Univ Pittsburgh PA 15213 USA Columbia Univ New York NY USA
We propose SAM-Road, an adaptation of the Segment Anything Model (SAM) [27] for extracting large-scale, vectorized road network graphs from satellite imagery. To predict graph geometry, we formulate it as a dense sema... 详细信息
来源: 评论
Bias in Pruned vision Models: In-Depth Analysis and Countermeasures
Bias in Pruned Vision Models: In-Depth Analysis and Counterm...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Iofinova, Eugenia Peste, Alexandra Alistarh, Dan IST Austria Klosterneuburg Austria Neural Magic Somerville NJ USA
Pruning-that is, setting a significant subset of the parameters of a neural network to zero-is one of the most popular methods of model compression. Yet, several recent works have raised the issue that pruning may ind... 详细信息
来源: 评论
Scaling Graph Convolutions for Mobile vision
Scaling Graph Convolutions for Mobile Vision
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Avery, William Munir, Mustafa Marculescu, Radu Univ Texas Austin Austin TX 78712 USA
To compete with existing mobile architectures, MobileViG introduces Sparse vision Graph Attention (SVGA), a fast token-mixing operator based on the principles of GNNs. However, MobileViG scales poorly with model size,... 详细信息
来源: 评论
ALINA: Advanced Line Identification and Notation Algorithm
ALINA: Advanced Line Identification and Notation Algorithm
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Khan, Mohammed Abdul Hafeez Ganeriwala, Parth Bhattacharyya, Siddhartha Neogi, Natasha Muthalagu, Raja Florida Inst Technol Melbourne FL 32901 USA NASA Langley Res Ctr Hampton VA 23665 USA BITS Pilani Dubai Campus Dubai U Arab Emirates
Labels are the cornerstone of supervised machine learning algorithms. Most visual recognition methods are fully supervised, using bounding boxes or pixel-wise segmentations for object localization. Traditional labelin... 详细信息
来源: 评论
Enhancing Deformable Local Features by Jointly Learning to Detect and Describe Keypoints
Enhancing Deformable Local Features by Jointly Learning to D...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Potje, Guilherme Cadar, Felipe Araujo, Andre Martins, Renato Nascimento, Erickson R. Univ Fed Minas Gerais Belo Horizonte Brazil Google Res New York NY USA Univ Bourgogne Dijon France Univ Lorraine LORIA Inria Thionville France Microsoft Redmond WA USA
Local feature extraction is a standard approach in computer vision for tackling important tasks such as image matching and retrieval. The core assumption of most methods is that images undergo affine transformations, ... 详细信息
来源: 评论