咨询与建议

限定检索结果

文献类型

  • 19,636 篇 会议
  • 48 篇 期刊文献
  • 3 册 图书

馆藏范围

  • 19,686 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 12,586 篇 工学
    • 10,354 篇 计算机科学与技术...
    • 2,449 篇 机械工程
    • 2,010 篇 软件工程
    • 815 篇 光学工程
    • 598 篇 电气工程
    • 433 篇 控制科学与工程
    • 329 篇 信息与通信工程
    • 211 篇 测绘科学与技术
    • 80 篇 生物医学工程(可授...
    • 75 篇 生物工程
    • 69 篇 电子科学与技术(可...
    • 67 篇 仪器科学与技术
    • 37 篇 建筑学
    • 36 篇 土木工程
    • 34 篇 力学(可授工学、理...
    • 31 篇 航空宇航科学与技...
    • 29 篇 安全科学与工程
    • 23 篇 交通运输工程
    • 21 篇 化学工程与技术
    • 20 篇 材料科学与工程(可...
  • 3,435 篇 医学
    • 3,434 篇 临床医学
  • 1,980 篇 理学
    • 1,001 篇 数学
    • 972 篇 物理学
    • 356 篇 统计学(可授理学、...
    • 340 篇 生物学
    • 235 篇 系统科学
    • 26 篇 化学
  • 262 篇 管理学
    • 141 篇 管理科学与工程(可...
    • 124 篇 图书情报与档案管...
    • 26 篇 工商管理
  • 19 篇 法学
  • 12 篇 农学
  • 8 篇 教育学
  • 6 篇 经济学
  • 4 篇 艺术学
  • 2 篇 军事学

主题

  • 7,948 篇 computer vision
  • 2,773 篇 training
  • 2,711 篇 pattern recognit...
  • 1,771 篇 computational mo...
  • 1,660 篇 visualization
  • 1,426 篇 cameras
  • 1,383 篇 three-dimensiona...
  • 1,345 篇 shape
  • 1,236 篇 face recognition
  • 1,222 篇 feature extracti...
  • 1,213 篇 image segmentati...
  • 1,117 篇 robustness
  • 1,094 篇 semantics
  • 977 篇 layout
  • 960 篇 object detection
  • 946 篇 benchmark testin...
  • 944 篇 computer archite...
  • 931 篇 codes
  • 896 篇 computer science
  • 861 篇 deep learning

机构

  • 174 篇 univ sci & techn...
  • 159 篇 carnegie mellon ...
  • 148 篇 univ chinese aca...
  • 144 篇 chinese univ hon...
  • 109 篇 microsoft resear...
  • 103 篇 zhejiang univ pe...
  • 103 篇 tsinghua univ pe...
  • 99 篇 swiss fed inst t...
  • 92 篇 tsinghua univers...
  • 89 篇 microsoft res as...
  • 88 篇 shanghai ai lab ...
  • 81 篇 zhejiang univers...
  • 76 篇 alibaba grp peop...
  • 74 篇 university of sc...
  • 73 篇 hong kong univ s...
  • 73 篇 university of ch...
  • 72 篇 peking univ peop...
  • 68 篇 shanghai jiao to...
  • 66 篇 univ oxford oxfo...
  • 65 篇 google res mount...

作者

  • 79 篇 van gool luc
  • 70 篇 zhang lei
  • 60 篇 timofte radu
  • 48 篇 yang yi
  • 48 篇 luc van gool
  • 46 篇 xiaoou tang
  • 43 篇 darrell trevor
  • 43 篇 tian qi
  • 42 篇 loy chen change
  • 42 篇 sun jian
  • 42 篇 li fei-fei
  • 40 篇 li stan z.
  • 39 篇 qi tian
  • 36 篇 chen xilin
  • 36 篇 torralba antonio
  • 35 篇 vasconcelos nuno
  • 35 篇 shan shiguang
  • 35 篇 liu yang
  • 34 篇 liu xiaoming
  • 34 篇 tao dacheng

语言

  • 19,681 篇 英文
  • 3 篇 中文
  • 2 篇 日文
  • 1 篇 其他
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015"
19687 条 记 录,以下是861-870 订阅
排序:
Zero-shot Referring Image Segmentation with Global-Local Context Features
Zero-shot Referring Image Segmentation with Global-Local Con...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Yu, Seonghoon Seo, Paul Hongsuck Son, Jeany GIST AI Grad Sch Gwangju South Korea Google Res Mountain View CA USA
Referring image segmentation (RIS) aims to find a segmentation mask given a referring expression grounded to a region of the input image. Collecting labelled datasets for this task, however, is notoriously costly and ... 详细信息
来源: 评论
Learning Rotation-Equivariant Features for Visual Correspondence
Learning Rotation-Equivariant Features for Visual Correspond...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Lee, Jongmin Kim, Byungjin Kim, Seungwook Cho, Minsu Pohang Univ Sci & Technol POSTECH Pohang South Korea
Extracting discriminative local features that are invariant to imaging variations is an integral part of establishing correspondences between images. In this work, we introduce a self-supervised learning framework to ... 详细信息
来源: 评论
CutMIB: Boosting Light Field Super-Resolution via Multi-View Image Blending
CutMIB: Boosting Light Field Super-Resolution via Multi-View...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xiao, Zeyu Liu, Yutong Gao, Ruisheng Xiong, Zhiwei Univ Sci & Technol China Hefei Peoples R China
Data augmentation (DA) is an efficient strategy for improving the performance of deep neural networks. Recent DA strategies have demonstrated utility in single image super-resolution (SR). Little research has, however... 详细信息
来源: 评论
SFD2: Semantic-guided Feature Detection and Description
SFD2: Semantic-guided Feature Detection and Description
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Xue, Fei Budvytis, Ignas Cipolla, Roberto Univ Cambridge Cambridge England
Visual localization is a fundamental task for various applications including autonomous driving and robotics. Prior methods focus on extracting large amounts of often redundant locally reliable features, resulting in ... 详细信息
来源: 评论
Photo-Realistic Image Restoration in the Wild with Controlled vision-Language Models
Photo-Realistic Image Restoration in the Wild with Controlle...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Luo, Ziwei Gustafsson, Fredrik K. Zhao, Zheng Sjolund, Jens Schon, Thomas B. Uppsala Univ Uppsala Sweden Karolinska Inst Stockholm Sweden
Though diffusion models have been successfully applied to various image restoration (IR) tasks, their performance is sensitive to the choice of training datasets. Typically, diffusion models trained in specific datase... 详细信息
来源: 评论
Manipulating Transfer Learning for Property Inference
Manipulating Transfer Learning for Property Inference
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Tian, Yulong Suya, Fnu Suri, Anshuman Xu, Fengyuan Evans, David Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China Univ Virginia Charlottesville VA USA
Transfer learning is a popular method for tuning pre-trained (upstream) models for different downstream tasks using limited data and computational resources. We study how an adversary with control over an upstream mod... 详细信息
来源: 评论
Re-thinking Federated Active Learning based on Inter-class Diversity
Re-thinking Federated Active Learning based on Inter-class D...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Kim, SangMook Bae, Sangmin Song, Hwanjun Yun, Se -Young KAIST AI Daejeon South Korea NAVER AI LAB Grenoble France
Although federated learning has made awe-inspiring advances, most studies have assumed that the client's data are fully labeled. However, in a real-world scenario, every client may have a significant amount of unl... 详细信息
来源: 评论
Generalized UAV Object Detection via Frequency Domain Disentanglement
Generalized UAV Object Detection via Frequency Domain Disent...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Wang, Kunyu Fu, Xueyang Huang, Yukun Cao, Chengzhi Shi, Gege Zha, Zheng-Jun Univ Sci & Technol China Hefei Anhui Peoples R China
When deploying the Unmanned Aerial Vehicles object detection (UAV-OD) network to complex and unseen real-world scenarios, the generalization ability is usually reduced due to the domain shift. To address this issue, t... 详细信息
来源: 评论
Learning Distortion Invariant Representation for Image Restoration from A Causality Perspective
Learning Distortion Invariant Representation for Image Resto...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Li, Xin Li, Bingchen Jin, Xin Lan, Cuiling Chen, Zhibo Univ Sci & Technol China Hefei Peoples R China Eastern Inst Adv Study Ningbo Peoples R China Microsoft Res Asia Beijing Peoples R China
In recent years, we have witnessed the great advancement of Deep neural networks (DNNs) in image restoration. However, a critical limitation is that they cannot generalize well to real-world degradations with differen... 详细信息
来源: 评论
Learning Sample Relationship for Exposure Correction
Learning Sample Relationship for Exposure Correction
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (cvpr)
作者: Huang, Jie Zhao, Feng Zhou, Man Xiao, Jie Zheng, Naishan Zheng, Kaiwen Xiong, Zhiwei Univ Sci & Technol China Hefei Peoples R China
Exposure correction task aims to correct the underexposure and its adverse overexposure images to the normal exposure in a single network. As well recognized, the optimization flow is the opposite. Despite great advan... 详细信息
来源: 评论