咨询与建议

限定检索结果

文献类型

  • 50,479 篇 会议
  • 1,421 册 图书
  • 1,041 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 52,940 篇 电子文献
  • 4 种 纸本馆藏

日期分布

学科分类号

  • 31,811 篇 工学
    • 24,804 篇 计算机科学与技术...
    • 12,568 篇 软件工程
    • 5,153 篇 光学工程
    • 4,756 篇 电气工程
    • 4,436 篇 信息与通信工程
    • 4,257 篇 机械工程
    • 3,956 篇 控制科学与工程
    • 2,474 篇 生物工程
    • 1,728 篇 生物医学工程(可授...
    • 1,584 篇 仪器科学与技术
    • 1,317 篇 电子科学与技术(可...
    • 793 篇 化学工程与技术
    • 698 篇 安全科学与工程
    • 542 篇 交通运输工程
    • 379 篇 建筑学
    • 331 篇 土木工程
  • 11,839 篇 理学
    • 6,434 篇 物理学
    • 5,405 篇 数学
    • 2,761 篇 生物学
    • 1,910 篇 统计学(可授理学、...
    • 801 篇 化学
    • 669 篇 系统科学
  • 5,305 篇 医学
    • 5,094 篇 临床医学
    • 729 篇 基础医学(可授医学...
    • 459 篇 药学(可授医学、理...
  • 3,350 篇 管理学
    • 1,953 篇 图书情报与档案管...
    • 1,535 篇 管理科学与工程(可...
    • 479 篇 工商管理
  • 720 篇 艺术学
    • 718 篇 设计学(可授艺术学...
  • 428 篇 法学
    • 401 篇 社会学
  • 297 篇 农学
  • 197 篇 教育学
  • 163 篇 经济学
  • 63 篇 文学
  • 49 篇 军事学

主题

  • 17,385 篇 computer vision
  • 9,017 篇 pattern recognit...
  • 4,196 篇 training
  • 3,815 篇 feature extracti...
  • 3,134 篇 cameras
  • 2,870 篇 computational mo...
  • 2,789 篇 image segmentati...
  • 2,622 篇 visualization
  • 2,573 篇 shape
  • 2,533 篇 face recognition
  • 2,171 篇 robustness
  • 2,123 篇 computer science
  • 1,973 篇 object detection
  • 1,959 篇 computer archite...
  • 1,878 篇 layout
  • 1,853 篇 object recogniti...
  • 1,802 篇 three-dimensiona...
  • 1,725 篇 neural networks
  • 1,708 篇 humans
  • 1,691 篇 image recognitio...

机构

  • 165 篇 univ chinese aca...
  • 144 篇 tsinghua univers...
  • 136 篇 national laborat...
  • 108 篇 univ sci & techn...
  • 104 篇 zhejiang univers...
  • 100 篇 shanghai jiao to...
  • 95 篇 microsoft resear...
  • 94 篇 university of sc...
  • 86 篇 zhejiang univ pe...
  • 84 篇 shanghai ai lab ...
  • 74 篇 school of comput...
  • 69 篇 computer vision ...
  • 68 篇 peking univ peop...
  • 68 篇 chinese acad sci...
  • 65 篇 chinese univ hon...
  • 63 篇 institute of inf...
  • 62 篇 google res mount...
  • 61 篇 univ oxford oxfo...
  • 59 篇 univ toronto on
  • 57 篇 swiss fed inst t...

作者

  • 91 篇 van gool luc
  • 87 篇 umapada pal
  • 76 篇 zhang lei
  • 64 篇 lee seong-whan
  • 49 篇 vittorio murino
  • 42 篇 yang yi
  • 34 篇 nassir navab
  • 33 篇 li xin
  • 33 篇 jie yang
  • 32 篇 liu yang
  • 31 篇 escalera sergio
  • 31 篇 loy chen change
  • 30 篇 ling haibin
  • 30 篇 h. bischof
  • 29 篇 zhou jie
  • 29 篇 vasconcelos nuno
  • 29 篇 jan-michael frah...
  • 29 篇 hanqing lu
  • 28 篇 blumenstein mich...
  • 27 篇 jia yunde

语言

  • 51,871 篇 英文
  • 835 篇 其他
  • 241 篇 中文
  • 22 篇 土耳其文
  • 5 篇 西班牙文
  • 2 篇 日文
  • 2 篇 葡萄牙文
  • 2 篇 俄文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition"
52943 条 记 录,以下是181-190 订阅
排序:
Scaling Graph Convolutions for Mobile vision
Scaling Graph Convolutions for Mobile Vision
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Avery, William Munir, Mustafa Marculescu, Radu Univ Texas Austin Austin TX 78712 USA
To compete with existing mobile architectures, MobileViG introduces Sparse vision Graph Attention (SVGA), a fast token-mixing operator based on the principles of GNNs. However, MobileViG scales poorly with model size,... 详细信息
来源: 评论
Building vision-Language Models on Solid Foundations with Masked Distillation
Building Vision-Language Models on Solid Foundations with Ma...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Sameni, Sepehr Kafle, Kushal Tan, Hao Jenni, Simon Univ Bern Bern Switzerland Adobe Res San Jose CA USA
Recent advancements in vision-Language Models (VLMs) have marked a significant leap in bridging the gap between computer vision and natural language processing. However, traditional VLMs, trained through contrastive l... 详细信息
来源: 评论
Learning by Correction: Efficient Tuning Task for Zero-Shot Generative vision-Language Reasoning
Learning by Correction: Efficient Tuning Task for Zero-Shot ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Li, Rongjie Wu, Yu He, Xuming ShanghaiTech Univ Sch Informat Sci & Technol Shanghai Peoples R China Shanghai Engn Res Ctr Intelligent Vis & Imaging Shanghai Peoples R China
Generative vision-language models (VLMs) have shown impressive performance in zero-shot vision-language tasks like image captioning and visual question answering. However, improving their zero-shot reasoning typically... 详细信息
来源: 评论
A Comprehensive Analysis of Factors Impacting Membership Inference
A Comprehensive Analysis of Factors Impacting Membership Inf...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: DeAlcala, Daniel Mancera, Gonzalo Morales, Aythami Fierrez, Julian Tolosana, Ruben Ortega-Garcia, Javier Univ Autonoma Madrid Biometr & Data Pattern Analyt Lab Madrid Spain
We analyze various factors affecting the proper functioning of MIA and MINT, two research lines aimed at detecting data used for training. The difference between these lines lies in the environmental conditions, while... 详细信息
来源: 评论
Hairy Ground Truth Enhancement for Semantic Segmentation
Hairy Ground Truth Enhancement for Semantic Segmentation
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Fischer, Sophie Voiculescu, Irina Univ Oxford Dept Comp Sci Oxford England
Semantic segmentation is a key task within applications of machine learning for medical imaging, requiring large amounts of medical scans annotated by clinicians. The high cost of data annotation means that models nee... 详细信息
来源: 评论
DELTA: Decoupling Long-Tailed Online Continual Learning
DELTA: Decoupling Long-Tailed Online Continual Learning
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Raghavan, Siddeshwar He, Jiangpeng Zhu, Fengqing Purdue Univ Sch Elect & Comp Engn W Lafayette IN 47907 USA
A significant challenge in achieving ubiquitous Artificial Intelligence is the limited ability of models to rapidly learn new information in real-world scenarios where data follows long-tailed distributions, all while... 详细信息
来源: 评论
Generative Rendering: Controllable 4D-Guided Video Generation with 2D Diffusion Models
Generative Rendering: Controllable 4D-Guided Video Generatio...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Cai, Shengqu Ceylan, Duygu Gadelha, Matheus Huang, Chun-Hao Paul Wang, Tuanfeng Yang Wetzstein, Gordon Stanford Univ Stanford CA 94305 USA Adobe Res San Francisco CA USA
Traditional 3D content creation tools empower users to bring their imagination to life by giving them direct control over a scene's geometry, appearance, motion, and camera path. Creating computer-generated videos... 详细信息
来源: 评论
Towards Engineered Safe AI with Modular Concept Models
Towards Engineered Safe AI with Modular Concept Models
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Heidemann, Lena Kurzidem, Iwo Monnet, Maureen Roscher, Karsten Guennemann, Stephan Fraunhofer IKS Munich Germany Tech Univ Munich Munich Germany
The inherent complexity and uncertainty of Machine Learning (ML) makes it difficult for ML-based computer vision (CV) approaches to become prevalent in safety-critical domains like autonomous driving, despite their hi... 详细信息
来源: 评论
Domain Targeted Synthetic Plant Style Transfer using Stable Diffusion, LoRA and ControlNet
Domain Targeted Synthetic Plant Style Transfer using Stable ...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Hartley, Zane K. J. Lind, Rob J. Pound, Michael P. French, Andrew P. Univ Nottingham Wollaton Rd Nottingham NG8 1BB England Syngenta Jealotts Hill Int Res Ctr Warfield England
Synthetic images can help alleviate much of the cost in the creation of training data for plant phenotyping-focused AI development. Synthetic-to-real style transfer is of particular interest to users of artificial dat... 详细信息
来源: 评论
Classifier Guided Cluster Density Reduction for Dataset Selection
Classifier Guided Cluster Density Reduction for Dataset Sele...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chang, Cheng Long, Keyu Li, Zijian Rai, Himanshu Layer 6 AI Toronto ON Canada
In this paper, we address the challenge of selecting an optimal dataset from a source pool with annotations to enhance performance on a target dataset derived from a different source. This is important in scenarios wh... 详细信息
来源: 评论