In order to explore the cognitive mechanisms of Chinese character recognition under prosthetic vision, event-related potential techniques were used on a "learning-recognition"experimental paradigm with 540 h...
详细信息
Human Activity recognition(HAR) is an essential field of research with numerous applications in human-computer interaction, security, surveillance, and healthcare. Even with significant improvements, recognizing activ...
详细信息
The significance of high-speed machine vision in scientific and technological fields is growing, especially with the era of Industry 4.0 technologies. There are several pattern-matching algorithms that have various in...
详细信息
The significance of high-speed machine vision in scientific and technological fields is growing, especially with the era of Industry 4.0 technologies. There are several pattern-matching algorithms that have various intriguing applications in ultralow-latency machine vision processing. However, the low frame rate of image sensors-which usually operate at tens of hertz-fundamentally limits the processing rate. The paper will conceptualize and develop the computerized patternrecognition technique that can be applied to investigate light beam profiles and extract the desired information according to the purpose required in this case study. In the current work, the automatic detection and inspection of laser spots were designed to perform analysis and alignment for laser beam in comparison with the electron spot beam using the LabVIEW graphical programming environment, especially when the laser and electron beams overlap. This is one of the important steps for realizing the fundamental aim of test-FEL to produce short wavelengths with the second, third, and fifth harmonics at 131.5, 88, and 53 nm, respectively. The tentative version of the program achieved the elementary purpose, which fulfilled the accurate transversal alignment of the ultrashort laser pulses with the electron beam in the system of the FEL test facility at MAX-Lab, in addition to studying the beam's stability and jittering range. Copyright (C) 2024 The Authors.
Generative adversarial networks (GANs) can generate high-quality images from sampled latent codes. Recent works attempt to edit an image by manipulating its underlying latent code, but rarely go beyond the basic task ...
详细信息
ISBN:
(纸本)9781665445092
Generative adversarial networks (GANs) can generate high-quality images from sampled latent codes. Recent works attempt to edit an image by manipulating its underlying latent code, but rarely go beyond the basic task of attribute adjustment. We propose the first method that enables manipulation with multidimensional condition such as keypoints and captions. Specifically, we design an algorithm that searches for a new latent code that satisfies the target condition based on the Surrogate Gradient Field (SGF) induced by an auxiliary mapping network. For quantitative comparison, we propose a metric to evaluate the disentanglement of manipulation methods. Thorough experimental analysis on the facial attribute adjustment task shows that our method outperforms state-of-the-art methods in disentanglement. We further apply our method to tasks of various condition modalities to demonstrate that our method can alter complex image properties such as keypoints and captions.
We propose an architecture and training scheme to predict video frames by explicitly modeling dis-occlusions and capturing the evolution of semantically consistent regions in the video. The scene layout (semantic map)...
详细信息
ISBN:
(纸本)9781665445092
We propose an architecture and training scheme to predict video frames by explicitly modeling dis-occlusions and capturing the evolution of semantically consistent regions in the video. The scene layout (semantic map) and motion (optical flow) are decomposed into layers, which are predicted and fused with their context to generate future layouts and motions. The appearance of the scene is warped from past frames using the predicted motion in co-visible regions;dis-occluded regions are synthesized with content-aware inpainting utilizing the predicted scene layout. The result is a predictive model that explicitly represents objects and learns their class-specific motion, which we evaluate on video prediction benchmarks.
Advancement in digital pathology has enabled deep learning-based computervision techniques for automated diagnosis and prognosis of diseases. The essentiality of early detection and prognosis of any cancer category l...
详细信息
Multi-modal generative models represent an important family of deep models, whose goal is to facilitate representation learning on data with multiple views or modalities. However, current deep multi-modal models focus...
详细信息
ISBN:
(纸本)9781665448994
Multi-modal generative models represent an important family of deep models, whose goal is to facilitate representation learning on data with multiple views or modalities. However, current deep multi-modal models focus on the inference of shared representations, while neglecting the important private aspects of data within individual modalities. In this paper, we introduce a disentangled multi-modal variational autoencoder (DMVAE) that utilizes disentangled VAE strategy to separate the private and shared latent spaces of multiple modalities. We demonstrate the utility of DMVAE two image modalities of MNIST and Google Street View House Number (SVHN) datasets as well as image and text modalities from the Oxford-102 Flowers dataset. Our experiments indicate the essence of retaining the private representation as well as the private-shared disentanglement to effectively direct the information across multiple analysis-synthesis conduits.
Video quality assessment for User Generated Content (UGC) is an important topic in both industry and academia. Most existing methods only focus on one aspect of the perceptual quality assessment, such as technical qua...
详细信息
ISBN:
(纸本)9781665445092
Video quality assessment for User Generated Content (UGC) is an important topic in both industry and academia. Most existing methods only focus on one aspect of the perceptual quality assessment, such as technical quality or compression artifacts. In this paper, we create a large scale dataset to comprehensively investigate characteristics of generic UGC video quality. Besides the subjective ratings and content labels of the dataset, we also propose a DNN-based framework to thoroughly analyze importance of content, technical quality, and compression level in perceptual quality. Our model is able to provide quality scores as well as human-friendly quality indicators, to bridge the gap between low level video signals to human perceptual quality. Experimental results show that our model achieves state-ofthe-art correlation with Mean Opinion Scores (MOS).
In this paper, we propose a novel graph convolutional network architecture, Graph Stacked Hourglass Networks, for 2D-to-3D human pose estimation tasks. The proposed architecture consists of repeated encoder-decoder, i...
详细信息
ISBN:
(纸本)9781665445092
In this paper, we propose a novel graph convolutional network architecture, Graph Stacked Hourglass Networks, for 2D-to-3D human pose estimation tasks. The proposed architecture consists of repeated encoder-decoder, in which graph-structured features are processed across three different scales of human skeletal representations. This multi-scale architecture enables the model to learn both local and global feature representations, which are critical for 3D human pose estimation. We also introduce a multi-level feature learning approach using different-depth intermediate features and show the performance improvements that result from exploiting multi-scale, multi-level feature representations. Extensive experiments are conducted to validate our approach, and the results show that our model outperforms the state-of-the-art.
We propose a deep learning system for attention-guided dual-layer image compression (AGDL). In the AGDL compression system, an image is encoded into two layers, a base layer and an attention-guided refinement layer. U...
详细信息
ISBN:
(纸本)9781665445092
We propose a deep learning system for attention-guided dual-layer image compression (AGDL). In the AGDL compression system, an image is encoded into two layers, a base layer and an attention-guided refinement layer. Unlike the existing ROI image compression methods that spend an extra bit budget equally on all pixels in ROI, AGDL employs a CNN module to predict those pixels on and near a saliency sketch within ROI that are critical to perceptual quality. Only the critical pixels are further sampled by compressive sensing (CS) to form a very compact refinement layer. Another novel CNN method is developed to jointly decode the two compression layers for a much refined reconstruction, while strictly satisfying the transmitted CS constraints on perceptually critical pixels. Extensive experiments demonstrate that the proposed AGDL system advances the state of the art in perception-aware image compression.
暂无评论