咨询与建议

限定检索结果

文献类型

  • 50,479 篇 会议
  • 1,421 册 图书
  • 1,041 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 52,940 篇 电子文献
  • 4 种 纸本馆藏

日期分布

学科分类号

  • 31,811 篇 工学
    • 24,804 篇 计算机科学与技术...
    • 12,568 篇 软件工程
    • 5,153 篇 光学工程
    • 4,756 篇 电气工程
    • 4,436 篇 信息与通信工程
    • 4,257 篇 机械工程
    • 3,956 篇 控制科学与工程
    • 2,474 篇 生物工程
    • 1,728 篇 生物医学工程(可授...
    • 1,584 篇 仪器科学与技术
    • 1,317 篇 电子科学与技术(可...
    • 793 篇 化学工程与技术
    • 698 篇 安全科学与工程
    • 542 篇 交通运输工程
    • 379 篇 建筑学
    • 331 篇 土木工程
  • 11,839 篇 理学
    • 6,434 篇 物理学
    • 5,405 篇 数学
    • 2,761 篇 生物学
    • 1,910 篇 统计学(可授理学、...
    • 801 篇 化学
    • 669 篇 系统科学
  • 5,305 篇 医学
    • 5,094 篇 临床医学
    • 729 篇 基础医学(可授医学...
    • 459 篇 药学(可授医学、理...
  • 3,350 篇 管理学
    • 1,953 篇 图书情报与档案管...
    • 1,535 篇 管理科学与工程(可...
    • 479 篇 工商管理
  • 720 篇 艺术学
    • 718 篇 设计学(可授艺术学...
  • 428 篇 法学
    • 401 篇 社会学
  • 297 篇 农学
  • 197 篇 教育学
  • 163 篇 经济学
  • 63 篇 文学
  • 49 篇 军事学

主题

  • 17,385 篇 computer vision
  • 9,017 篇 pattern recognit...
  • 4,196 篇 training
  • 3,815 篇 feature extracti...
  • 3,134 篇 cameras
  • 2,870 篇 computational mo...
  • 2,789 篇 image segmentati...
  • 2,622 篇 visualization
  • 2,573 篇 shape
  • 2,533 篇 face recognition
  • 2,171 篇 robustness
  • 2,123 篇 computer science
  • 1,973 篇 object detection
  • 1,959 篇 computer archite...
  • 1,878 篇 layout
  • 1,853 篇 object recogniti...
  • 1,802 篇 three-dimensiona...
  • 1,725 篇 neural networks
  • 1,708 篇 humans
  • 1,691 篇 image recognitio...

机构

  • 165 篇 univ chinese aca...
  • 144 篇 tsinghua univers...
  • 136 篇 national laborat...
  • 108 篇 univ sci & techn...
  • 104 篇 zhejiang univers...
  • 100 篇 shanghai jiao to...
  • 95 篇 microsoft resear...
  • 94 篇 university of sc...
  • 86 篇 zhejiang univ pe...
  • 84 篇 shanghai ai lab ...
  • 74 篇 school of comput...
  • 69 篇 computer vision ...
  • 68 篇 peking univ peop...
  • 68 篇 chinese acad sci...
  • 65 篇 chinese univ hon...
  • 63 篇 institute of inf...
  • 62 篇 google res mount...
  • 61 篇 univ oxford oxfo...
  • 59 篇 univ toronto on
  • 57 篇 swiss fed inst t...

作者

  • 91 篇 van gool luc
  • 87 篇 umapada pal
  • 76 篇 zhang lei
  • 64 篇 lee seong-whan
  • 49 篇 vittorio murino
  • 42 篇 yang yi
  • 34 篇 nassir navab
  • 33 篇 li xin
  • 33 篇 jie yang
  • 32 篇 liu yang
  • 31 篇 escalera sergio
  • 31 篇 loy chen change
  • 30 篇 ling haibin
  • 30 篇 h. bischof
  • 29 篇 zhou jie
  • 29 篇 vasconcelos nuno
  • 29 篇 jan-michael frah...
  • 29 篇 hanqing lu
  • 28 篇 blumenstein mich...
  • 27 篇 jia yunde

语言

  • 51,871 篇 英文
  • 835 篇 其他
  • 241 篇 中文
  • 22 篇 土耳其文
  • 5 篇 西班牙文
  • 2 篇 日文
  • 2 篇 葡萄牙文
  • 2 篇 俄文
检索条件"任意字段=IEEE Conference on Computer Vision and Pattern Recognition"
52943 条 记 录,以下是4841-4850 订阅
排序:
PSD: Principled Synthetic-to-Real Dehazing Guided by Physical Priors
PSD: Principled Synthetic-to-Real Dehazing Guided by Physica...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Zeyuan Wang, Yangchao Yang, Yang Liu, Dong Univ Sci & Technol China Hefei Peoples R China Univ Elect Sci & Technol China Chengdu Peoples R China
Deep learning-based methods have achieved remarkable performance for image dehazing. However, previous studies are mostly focused on training models with synthetic hazy images, which incurs performance drop when the m... 详细信息
来源: 评论
Audio Provenance Analysis in Heterogeneous Media Sets
Audio Provenance Analysis in Heterogeneous Media Sets
收藏 引用
ieee computer Society conference on computer vision and pattern recognition Workshops (CVPRW)
作者: Milica Gerhardt Luca Cuccovillo Patrick Aichroth Fraunhofer Institute for Digital Media Technology IDMT Ilemanu Germany
This paper introduces a framework for Audio Provenance Analysis, addressing the complex challenge of ana-lyzing heterogeneous sets of audio items without requiring any prior knowledge of their content. Our framework a... 详细信息
来源: 评论
Troubleshooting Blind Image Quality Models in the Wild
Troubleshooting Blind Image Quality Models in the Wild
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Wang, Zhihua Wang, Haotao Chen, Tianlong Wang, Zhangyang Ma, Kede City Univ Hong Kong Hong Kong Peoples R China Univ Texas Austin Austin TX 78712 USA
Recently, the group maximum differentiation competition (gMAD) has been used to improve blind image quality assessment (BIQA) models, with the help of full-reference metrics. When applying this type of approach to tro... 详细信息
来源: 评论
Neural Auto-Exposure for High-Dynamic Range Object Detection
Neural Auto-Exposure for High-Dynamic Range Object Detection
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Onzon, Emmanuel Mannan, Fahim Heide, Felix Algolux Montreal PQ Canada Princeton Univ Princeton NJ 08544 USA
Real-world scenes have a dynamic range of up to 280 dB that todays imaging sensors cannot directly capture. Existing live vision pipelines tackle this fundamental challenge by relying on high dynamic range (HDR) senso... 详细信息
来源: 评论
OpenCV and Python for Emotion Analysis of Face Expressions  3
OpenCV and Python for Emotion Analysis of Face Expressions
收藏 引用
3rd International conference on Innovative Practices in Technology and Management, ICIPTM 2023
作者: Islam Zim, Md Khadimul Lovely Professional University Department of Computer Science and Engineering Phagwara India
If someone showed you a picture of themselves and asked you to describe how they feel, you'd probably have a good idea. Think about how useful it would be if your computer could do that! But what if you could enha... 详细信息
来源: 评论
Mirror3D: Depth Refinement for Mirror Surfaces
Mirror3D: Depth Refinement for Mirror Surfaces
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Tan, Jiaqi Lin, Weijie Chang, Angel X. Savva, Manolis Simon Fraser Univ Burnaby BC Canada
Despite recent progress in depth sensing and 3D reconstruction, mirror surfaces are a significant source of errors. To address this problem, we create the Mirror3D dataset: a 3D mirror plane dataset based on three RGB... 详细信息
来源: 评论
Omnimatte: Associating Objects and Their Effects in Video
Omnimatte: Associating Objects and Their Effects in Video
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Lu, Erika Cole, Forrester Dekel, Tali Zisserman, Andrew Freeman, William T. Rubinstein, Michael Google Res Mountain View CA 94043 USA Univ Oxford Oxford England Weizmann Inst Sci Rehovot Israel
computer vision is increasingly effective at segmenting objects in images and videos;however, scene effects related to the objects-shadows, reflections, generated smoke, etc.-are typically overlooked. Identifying such... 详细信息
来源: 评论
Cross-Modal Center Loss for 3D Cross-Modal Retrieval
Cross-Modal Center Loss for 3D Cross-Modal Retrieval
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Jing, Longlong Vahdani, Elahe Tan, Jiaxing Tian, Yingli CUNY New York NY 10021 USA
Cross-modal retrieval aims to learn discriminative and modal-invariant features for data from different modalities. Unlike the existing methods which usually learn from the features extracted by offline networks, in t... 详细信息
来源: 评论
Jigsaw Clustering for Unsupervised Visual Representation Learning
Jigsaw Clustering for Unsupervised Visual Representation Lea...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Chen, Pengguang Liu, Shu Jia, Jiaya Chinese Univ Hong Kong Hong Kong Peoples R China SmartMore Hong Kong Peoples R China
Unsupervised representation learning with contrastive learning achieved great success. This line of methods duplicate each training batch to construct contrastive pairs, making each training batch and its augmented ve... 详细信息
来源: 评论
Virtual Fully-Connected Layer: Training a Large-Scale Face recognition Dataset with Limited Computational Resources
Virtual Fully-Connected Layer: Training a Large-Scale Face R...
收藏 引用
ieee/CVF conference on computer vision and pattern recognition (CVPR)
作者: Li, Pengyu Wang, Biao Zhang, Lei Alibaba Grp Artificial Intelligence Ctr DAMO Acad Hangzhou Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China
Recently, deep face recognition has achieved significant progress because of Convolutional Neural Networks (CNNs) and large-scale datasets. However, training CNNs on a large-scale face recognition dataset with limited... 详细信息
来源: 评论